
FreeBSD ports
(a personal perspective of a user)

Klaus Aehlig

May 10, 2011

Disclaimer

I It’s a personal perspective
and by no means an official position of the FreeBSD project.

I All opinions expressed are my own.

I This is not a tutorial on the ports system.
I This is just to give an idea, what it’s about.
I For full information read the Porter’s Handbook.

I I’m using BSD only since October 2008,
hence my experience is limited.

I Probably, I’m not always doing things the best way.
I What I tell can be inaccurate—or even wrong.

BUT THERE’S MORE THAN ONE WAY TO DO IT!

The Problem

Every software project that involves more than a hand full of
persons will inevitable have. . . (note the order!)

I persons with a difficult personality,

I bugs in parts important to you,
but not important for most others,

I design choices that are not to your taste,

I . . .

There are no exceptions to this rule. FreeBSD isn’t either.
(even though it’s much better there than a lot other projects)

So, how to deal with that?

I Committees, rules, regulations, policies, standards, . . . ?

I Make it easy to deviate where you want and only there!

A Rant on Binary Distributions

I (personally) failed using an open-source binary distribution.
It was too much “One size fits all”.

I Fixed policy on file system hierarchy layout, paths, . . .
I Situations are different for various applications. . .

I strip or -g?
I Few library dependencies or full features?
I Have X-support? Documentation?
I . . .

. . . but no global knobs like WITHOUT X11, WITH DOC, . . .

I Changing a little thing meant forking the whole package.

I No easy way to adapt after switching a library version.

I don’t want the system to tell me, what to do. I want it to adapt
to my needs. So let’s look at something different. . .

Ports—The Basic Idea

Essentially, a port is like a recipe. . .
or a formalised report of someone, who managed to install it

. . . you say what to do (buy ingredients, remove bad parts, . . .)

fetch, checksum, extract, patch, configure,
build, install, clean

I All done with standard infrastructure: have a Makefile.

I Only write down what is specific to that very port!
i.e., where you deviate from the vanilla ./configure &&

make && make install; the rest is in a big shared file.
.include <bsd.port.mk>

I That way 23k ports with 17y history fit into a single 1.7GB
CVS repository.

But before we go into details, a little remark on make(1). . .

A detail on make(1)

First of all, the initial list of specifications will be read
from the system makefile, sys.mk, unless inhibited with
the -r option. The standard sys.mk as shipped with
FreeBSD also handles make.conf(5), the default path to
which can be altered via the make variable MAKE CONF.

(man make)

I Every call to make reads /etc/make.conf (outside ‘pwd‘!)
. . . unless in an environment where you want something else.

I You can make the effect specific to a particular port using

.if !empty(.CURDIR:M*/ports/xxx/yyy*)

...

.endif

KEEP THIS IN MIND!

fetch, checksum, extract

Let’s walk through misc/findutils. First: get the sources.
Downloading is standard, so we only fill in the parameters.

PORTNAME= findutils

PORTVERSION= 4.5.9

MASTER SITES= ${MASTER SITE GNU ALPHA}
MASTER SITE SUBDIR= findutils

The files to fetch are DISTFILES, with default expanding to
${PORTNAME}-${PORTVERSION}${EXTRACT SUFX}.
For obvious security reasons we store in distinfo

SHA256 (findutils-4.5.9.tar.gz) =

Files are fetched only once and stored in ${DISTDIR}. Check sums
are checked. We unpack everything in ${WRKDIR}.

See all these variables? Remember we read /etc/make.conf?

Side remark: updating

I Note that the only thing we store that is particular to a
version is the version number and the checksum

I So, for perfect upstream, updating is just
I change the version number (a single digit)
I make makesum
I verify integrity of what you fetched

I In reality, before using (let alone showing anyone), you also
want to

I see how the build process has changed
I verify how the set of installed files has changed
I look for user-visible changes (documented and undocumented)
I check for bugs (and communicate fixes back upstream)
I . . .

patch, configure

I patches from ${PATCHDIR} are applied

I configure is run (this is also a good place to honour options)

GNU CONFIGURE=yes

CONFIGURE ENV= CPPFLAGS="-I${LOCALBASE}/include" ...

.if !defined(WITHOUT NLS)

USE GETTEXT= yes

PLIST SUB+= NLS=""

.else

CONFIGURE ARGS+= --disable-nls

PLIST SUB+= NLS="@comment "

.endif

CONFIGURE ARGS+= --program-prefix=g ...

Note: the list of files installed changes depending on options

build, install, clean

I the build utility is called to build; usually also for install
but sometimes need a do-install target

USE GMAKE= yes

MAKE ARGS= INSTALL SCRIPT="${INSTALL SCRIPT}"
MAKE JOBS SAFE= yes

I After installation, the software is registered with its file list
(essentially the file pkg-plist, with PLIST SUB honoured;
but also consider INFO, MAN1, . . . , PLIST FILES, . . .)

I Hashes of all installed files are computed.
I install/remove scripts also in pkg-plist
I Also: pkg-descr, COMMENT, . . .
I actual dependencies are registered
I . . .

Home-grown ports trees may shortcut here, if stow(1) is used
as packaging tool.

I clean is easy. Just throw away ${WRKDIR}

Dependencies

I Distinguish between FETCH DEPENDS, EXTRACT DEPENDS,
PATCH DEPENDS, BUILD DEPENDS, RUN DEPENDS,
LIB DEPENDS.

I given as a triple
I A file that must exists (maybe in ${PATH}), a library (maybe

with version constraints), . . .
Note: dependency can be provided by a different than the
intended package

I a port directory for the dependency
I a target to execute, in order to get the dependency

usually omitted, if the default install applies

And, of course, there is NO DEPENDS for the user to override. . .

Slave Ports

Remember? It’s all about setting variables right. . .
So with ?= in the right places, you can be useful for someone else.

The whole(!!) port print/a2ps-a4 reads as follows.

PAPERSIZE= a4

MASTERDIR= ${.CURDIR}/../a2ps-letter

.include "${MASTERDIR}/Makefile"

Again: only describe what’s different.

EXTRA PATCHES

I That ${PATCHDIR}/patch-* is applied is only half the truth
. . . as this would be much to inflexible!

I There are “distribution patches” (provided by 3rd party).
Don’t duplicate code!
Set PATCH FILES and PATCH SITES for that.

I Some patches are only for certain user options.
Some distribution patches need preprocessing. . . .

 Can set EXTRA PATCHES for that.

 And then there are the targets pre-patch, post-patch, . . .

I But there are also creative uses of all these. . .

EXTRA PATCHES (mis)used for site-patches

Say, on your machine, you want a different greeting for gunits(1).

I cd /usr/ports/math/units && make extract

I copy units.c to units.c.orig and change units.c

I diff -u units.c.orig units.c > /x/y/z.diff

I add to make.conf
.if !empty(.CURDIR:M*/ports/math/units*)

EXTRA PATCHES += /x/y/z.diff

.endif

I Reinstall as usual (portupgrade -f units) and. . .

$ gunits

This program contains a patch by Klaus

2526 units, 72 prefixes, 56 nonlinear units

...

I Note: nothing changed under /usr/ports!
So, you get updates as usual, with your usual update-routine.

Flexibility. . .

. . . sometimes requires a bit of extra work.

post-patch:

@${REINPLACE CMD} -e "s|/usr/local|${PREFIX}|" \
${WRKSRC}/examples/config/config \
${WRKSRC}/bin/uzbl-browser \
${WRKSRC}/bin/uzbl-event-manager
@${REINPLACE CMD} -e

"s|share/uzbl|${DATADIR REL}|" \
${WRKSRC}/examples/config/config \
${WRKSRC}/bin/uzbl-browser \
${WRKSRC}/bin/uzbl-event-manager
@${REINPLACE CMD} -e

"s|/usr/share/uzbl|${DATADIR}|" \
${WRKSRC}/bin/uzbl-tabbed

But it’s worth the extra effort!

A word to everyone distribution free open-source software

NOTES
This manual page documents the default FreeBSD file
system layout, but the actual hierarchy on a given system
is defined at the system administrator’s discretion.

(man hier)

People do will change things according to their needs.
That’s the whole point of open-source!

 By relying on a fixed layout/policy/. . . you’re working against
your users, as you make it hard for them to get their job done
(which might be different from your goals).

Finally. . .

. . . it’s the ideas that matters, not the concrete implementation!

I Don’t duplicate, only document where you deviate
. . . and why you had to.

I Respect the local system administrator.
With one computer per person here, that is: the end user.

 Honour PREFIX, LOCALBASE, . . . TOOLS, NOT POLICIES.

I’ve got my own little ports tree for my GNU/Linux machines.
I On our server, we sometimes can’t use the distribution.

I Packet too far away from upstream.
I We need a specific version.
I We need patches very specific to our machine.
I . . .

I It was also useful, when I had to use a machine, where I
disagreed with the administrator ;-)

	Disclaimer
	Introduction
	Ports---The Basic Idea
	A detail on make(1)
	Ports---The Details
	EXTRA_PATCHES
	Flexibility
	Finally

