FreeBSD ports
(a personal perspective of a user)

Klaus Aehlig

May 10, 2011

Disclaimer

» It's a personal perspective
and by no means an official position of the FreeBSD project.

» All opinions expressed are my own.

» This is not a tutorial on the ports system.

» This is just to give an idea, what it's about.
» For full information read the Porter's Handbook.

» |I'm using BSD only since October 2008,
hence my experience is limited.

» Probably, I'm not always doing things the best way.
» What | tell can be inaccurate—or even wrong.

BUT THERE'S MORE THAN ONE WAY TO DO IT!

The Problem

Every software project that involves more than a hand full of
persons will inevitable have. .. (note the order!)

» persons with a difficult personality,

» bugs in parts important to you,
but not important for most others,

» design choices that are not to your taste,
> ...

There are no exceptions to this rule. FreeBSD isn't either.
(even though it's much better there than a lot other projects)

So, how to deal with that?
» Committees, rules, regulations, policies, standards, ...?

» Make it easy to deviate where you want and only there!

A Rant on Binary Distributions

| (personally) failed using an open-source binary distribution.
It was too much “One size fits all”.

» Fixed policy on file system hierarchy layout, paths, ...
» Situations are different for various applications. . .

> strip or -g?

» Few library dependencies or full features?

» Have X-support? Documentation?
> ...

but no global knobs like WITHOUT X11, WITH DQOC, ...
» Changing a little thing meant forking the whole package.
» No easy way to adapt after switching a library version.

| don’t want the system to tell me, what to do. | want it to adapt
to my needs. So let's look at something different. ..

Ports—The Basic Idea

Essentially, a port is like a recipe. ..
or a formalised report of someone, who managed to install it
you say what to do (buy ingredients, remove bad parts, ...

fetch, checksum, extract, patch, configure,
butld, install, clean

» All done with standard infrastructure: have a Makefile.

» Only write down what is specific to that very port!
i.e., where you deviate from the vanilla ./configure €&
make €€ make install; the rest is in a big shared file.
.include <bsd.port.mk>

» That way 23k ports with 17y history fit into a single 1.7GB
CVS repository.

But before we go into details, a little remark on make(1)...

A detail on make(1)

First of all, the initial list of specifications will be read
from the system makefile, sys.mk, unless inhibited with
the -r option. The standard sys.mk as shipped with
FreeBSD also handles make. conf(5), the default path to
which can be altered via the make variable __MAKE_CONF.
(man make)

> Every call to make reads /etc/make.conf (outside ‘pwd‘!)
... unless in an environment where you want something else.

» You can make the effect specific to a particular port using
.if lempty(.CURDIR:M*/ports/czx/yyy*)

.endif

KEEP THIS IN MIND!

fetch, checksum, extract

Let's walk through misc/findutils. First: get the sources.
Downloading is standard, so we only fill in the parameters.
PORTNAME= findutils
PORTVERSION= 4.5.9
MASTER_SITES= ${MASTER_SITE GNU_ALPHA}
MASTER_SITE_SUBDIR= findutils

The files to fetch are DISTFILES, with default expanding to
${PORTNAME } -${PORTVERSION } ${EXTRACT_SUFX}.
For obvious security reasons we store in distinfo

SHA256 (findutils—4.5.9.tar.gz) =

Files are fetched only once and stored in ${DISTDIR}. Check sums
are checked. We unpack everything in ${WRKDIR}.

See all these variables? Remember we read /etc/make. conf?

Side remark: updating

» Note that the only thing we store that is particular to a
version is the version number and the checksum

» So, for perfect upstream, updating is just

>

>

>

change the version number (a single digit)
make makesum
verify integrity of what you fetched

» In reality, before using (let alone showing anyone), you also
want to

| 4

v vy VvYy

see how the build process has changed

verify how the set of installed files has changed

look for user-visible changes (documented and undocumented)
check for bugs (and communicate fixes back upstream)

patch, configure

» patches from ${PATCHDIR} are applied

» configure is run (this is also a good place to honour options)

GNU_CONFIGURE=yes

CONFIGURE_ENV= CPPFLAGS="-I${LOCALBASE}/include" ...

.if !defined (WITHOUT_NLS)

USE_GETTEXT= yes

PLIST SUB+= NLS=""

.else

CONFIGURE_ARGS+= --disable-nls
PLIST_SUB+= NLS="@comment "

.endif

CONFIGURE_ARGS+= --program-prefiz=g ...

Note: the list of files installed changes depending on options

build, install, clean

» the build utility is called to build; usually also for install
but sometimes need a do-install target
USE_GMAKE= yes

MAKE_ARGS= INSTALL_SCRIPT="${INSTALL_SCRIPT}"
MAKE_JOBS_SAFE= yes

» After installation, the software is registered with its file list
(essentially the file pkg-plist, with PLIST_SUB honoured;
but also consider INFO, MAN1, ..., PLIST FILES, ...)

Hashes of all installed files are computed.

install /remove scripts also in pkg-plist

Also: pkg-descr, COMMENT, ...

actual dependencies are registered

v

vV vy VvVYyYy

Home-grown ports trees may shortcut here, if stow(1) is used
as packaging tool.

> clean is easy. Just throw away ${WRKDIR}

Dependencies

» Distinguish between FETCH_DEPENDS, EXTRACT_DEPENDS,
PATCH_DEPENDS, BUILD_DEPENDS, RUN_DEPENDS,
LIB_DEPENDS.

» given as a triple

> A file that must exists (maybe in ${PATH}), a library (maybe
with version constraints), ...
Note: dependency can be provided by a different than the
intended package

> a port directory for the dependency

> a target to execute, in order to get the dependency
usually omitted, if the default install applies

And, of course, there is NO_DEPENDS for the user to override. . .

Slave Ports

Remember? It's all about setting variables right. ..
So with 7= in the right places, you can be useful for someone else.

The whole(!!) port print/a2ps-a4 reads as follows.

PAPERSIZE= a4
MASTERDIR= ${.CURDIR}/../a2ps-letter

.include "${MASTERDIR}/Makefile"

Again: only describe what's different.

EXTRA_PATCHES

» That ${PATCHDIR}/patch-* is applied is only half the truth
... as this would be much to inflexible!

» There are “distribution patches” (provided by 3rd party).
Don’t duplicate code!
Set PATCH_FILES and PATCH_SITES for that.

> Some patches are only for certain user options.
Some distribution patches need preprocessing. ...

Can set EXTRA_PATCHES for that.
And then there are the targets pre-patch, post-patch, ...

$

§

» But there are also creative uses of all these. ..

EXTRA PATCHES (mis)used for site-patches

Say, on your machine, you want a different greeting for gunits(1).

» cd /usr/ports/math/units && make extract

> copy units.c to units.c.orig and change units.c
» diff -u units.c.orig units.c > /x/y/z.diff
>

add to make.conf
.1f lempty(.CURDIR:M*/ports/math/units*)
EXTRA_PATCHES += /z/y/z.diff
.endif

» Reinstall as usual (portupgrade -f units) and...

$ gunits
This program contains a patch by Klaus
2526 units, 72 prefizes, 56 nonlinear units

» Note: nothing changed under /usr/ports!
So, you get updates as usual, with your usual update-routine.

Flexibility. . .

...sometimes requires a bit of extra work.

post-patch:

@${REINPLACE_CMD} -e "s|/usr/local|${PREFIX}[" \
${WRKSRC}/examples/config/config \
${WRKSRC} /bin/uzbl-browser \
${WRKSRC} /bin/uzbl-event-manager
O${REINPLACE_CMD} -e

"s|share/uzbl [${DATADIR REL} | " \
${WRKSRC} /ezamples/config/config \
${WRKSRC} /bin/uzbl-browser \
${WRKSRC} /bin/uzbl-event-manager
O${REINPLACE_CMD} -e
"s|/usr/share/uzbl |${DATADIR} | " \
${WRKSRC}/bin/uzbl-tabbed

But it's worth the extra effort!

A word to everyone distribution free open-source software

NOTES
This manual page documents the default FreeBSD file
system layout, but the actual hierarchy on a given system
is defined at the system administrator’s discretion.

(man hier)

People do will change things according to their needs.
That’s the whole point of open-source!

~ By relying on a fixed layout/policy/. . .you're working against
your users, as you make it hard for them to get their job done
(which might be different from your goals).

Finally. ..

...it's the ideas that matters, not the concrete implementation!
» Don’t duplicate, only document where you deviate
...and why you had to.
» Respect the local system administrator.
With one computer per person here, that is: the end user.
~» Honour PREFIX, LOCALBASE, ... TOOLS, NOT POLICIES.

I've got my own little ports tree for my GNU/Linux machines.
» On our server, we sometimes can't use the distribution.

» Packet too far away from upstream.

» We need a specific version.

» We need patches very specific to our machine.
> ..

» It was also useful, when | had to use a machine, where |
disagreed with the administrator ;-)

	Disclaimer
	Introduction
	Ports---The Basic Idea
	A detail on make(1)
	Ports---The Details
	EXTRA_PATCHES
	Flexibility
	Finally

