A Compiled Implementation
of Normalization by Evaluation

Klaus Aehligt Florian Haftmann? Tobias Nipkow?

IDepartment of Computer Science
Swansea University
2|nstitut fiir Informatik

Technische Universitat Miinchen

Conference on Theorem Proving in Higher Order Logics 2008

Normalization

Compute normal form of term wrt list of equations (incl /3)

Normalization

Compute normal form of term wrt list of equations (incl /3)

Equations:

» Recursion equations with pattern matching:
S5(x)+y=S(x+y)

Normalization

Compute normal form of term wrt list of equations (incl /3)

Equations:
» Recursion equations with pattern matching:
S(x)+y=S(x+y)
» But also arbitrary term-rewriting rules:
x+y)+tz=x+(y+2)

Normalization

Compute normal form of term wrt list of equations (incl /3)

Equations:
» Recursion equations with pattern matching:
S5(x)+y=5(x+y)
» But also arbitrary term-rewriting rules:
(x+y)+z=x+(y+2)
Terms:
» Ground terms: S(0) + S(0) —* 5(5(0))

Normalization

Compute normal form of term wrt list of equations (incl /3)

Equations:
» Recursion equations with pattern matching:
5(x)+y=S(x+y)
» But also arbitrary term-rewriting rules:
(x+y)+z=x+(y+2)
Terms:
» Ground terms: S(0) + S(0) —* 5(5(0))
» But also free and bound variables:
Aa.S5(a) + S(b) —* Xa.5(S(a+ b))

Normalization in Theorem Provers: Why and How

Why: Applications of fast evaluation/symbolic execution:

Normalization in Theorem Provers: Why and How

Why: Applications of fast evaluation/symbolic execution:
» Validation and testing

Normalization in Theorem Provers: Why and How

Why: Applications of fast evaluation/symbolic execution:
» Validation and testing
» Proofs involving complex computations
(4CT, Kepler Conjecture)

Normalization in Theorem Provers: Why and How

Why: Applications of fast evaluation/symbolic execution:
» Validation and testing

» Proofs involving complex computations
(4CT, Kepler Conjecture)
How:

Normalization in Theorem Provers: Why and How

Why: Applications of fast evaluation/symbolic execution:

» Validation and testing
» Proofs involving complex computations
(4CT, Kepler Conjecture)

How:
1. Compile to ML-like language (with pattern-matching)

Normalization in Theorem Provers: Why and How

Why: Applications of fast evaluation/symbolic execution:

» Validation and testing
» Proofs involving complex computations
(4CT, Kepler Conjecture)

How:
1. Compile to ML-like language (with pattern-matching)

2. Evaluate

Normalization in Theorem Provers: Why and How

Why: Applications of fast evaluation/symbolic execution:
» Validation and testing
» Proofs involving complex computations
(4CT, Kepler Conjecture)

How:
1. Compile to ML-like language (with pattern-matching)

2. Evaluate
3. Read back

Normalization in Theorem Provers: Why and How

Why: Applications of fast evaluation/symbolic execution:
» Validation and testing
» Proofs involving complex computations

(4CT, Kepler Conjecture)

How:
1. Compile to ML-like language (with pattern-matching)
2. Evaluate
3. Read back

Bypass inference kernel.

Normalization in Theorem Provers: Why and How

Why: Applications of fast evaluation/symbolic execution:
» Validation and testing
» Proofs involving complex computations
(4CT, Kepler Conjecture)
How:
1. Compile to ML-like language (with pattern-matching)
2. Evaluate
3. Read back

Bypass inference kernel.
Model and verify implementation.

Untyped Normalization by Evaluation

Formalisation in Isabelle

Related and Future Work

Untyped Normalization by Evaluation

Handling of Variables

» “compile, evaluate, read back” works fine. ..
for closed term of ground type
» But what about open terms?
» Even closed functions can only be presented
as Ax.t with x free in t

Handling of Variables

» “compile, evaluate, read back” works fine. ..
for closed term of ground type
» But what about open terms?
» Even closed functions can only be presented
as Ax.t with x free in t
» So we do have to handle free variables!
» Need a data type containing both,
its own function space and free variables
» First attempt

datatype Univ =
| Var of string
| Clo of (Univ -> Univ)

Handling of Variables

» “compile, evaluate, read back” works fine. ..
for closed term of ground type
» But what about open terms?
» Even closed functions can only be presented
as Ax.t with x free in t
» So we do have to handle free variables!
» Need a data type containing both,
its own function space and free variables
» First attempt

datatype Univ =
| Var of string
| Clo of (Univ -> Univ)

» But need to implement application!
What is (Var "x") v supposed to mean?

Handling of Variables (cont'd)

» Have to define what an application (Var "x") v means.

datatype Univ =
| Var of string
| Clo of (Univ -> Univ)

Handling of Variables (cont'd)

» Have to define what an application (Var "x") v means.

> An application (xt)s never creates a new redex!

datatype Univ =
| Var of string
| Clo of (Univ -> Univ)

Handling of Variables (cont'd)

» Have to define what an application (Var "x") v means.
> An application (xt)s never creates a new redex!

~» Can just collect the arguments

datatype Univ =
| Var of string * Univ list
| Clo of (Univ -> Univ)

Var x (vs @ [v])
fv

apply (Var x vs) v
apply (Clo f) v

Handling of Variables (cont'd)

» Have to define what an application (Var "x") v means.
> An application (xt)s never creates a new redex!

~» Can just collect the arguments

datatype Univ =
| Var of string * Univ list
| Clo of (Univ -> Univ)

apply (Var x vs) v = Var x (vs @ [v])
apply (Clo f) v=1~Ffv

» As Univ denotes normal terms, we can go back easily

term (Var x vs)
term (Clo f)

foldl Tapply (V x) (map term vs)
let x = new_var() in
Lam x (term (f x))

Constructors, Arity, ...

» Fine for the pure lambda-calculus.

datatype Univ =
| Var of string * Univ list
| Clo of (Univ -> Univ)

Var x (vs @ [v])
fv

apply (Var x vs) v
apply (Clo f) v

Constructors, Arity, ...

» Want lambda-calculus with data constructors (0, S, ...).

datatype Univ =
| Var of string * Univ list
| Clo of (Univ -> Univ)

Var x (vs @ [v])
fv

apply (Var x vs) v
apply (Clo f) v

Constructors, Arity, ...

» Want lambda-calculus with data constructors (0, S, ...).

~» Add constructors

datatype Univ =

| C of string

| Var of string * Univ list
| Clo of (Univ -> Univ)

Var x (vs @ [v])
fv

apply (Var x vs) v
apply (Clo f) v

Constructors, Arity, ...

» Want lambda-calculus with data constructors (0, S, ...).

~> Add constructors Application?

datatype Univ =

| C of string

| Var of string * Univ list
| Clo of (Univ -> Univ)

Var x (vs @ [v])
fv

apply (Var x vs) v
apply (Clo f) v

Constructors, Arity, ...

» Want lambda-calculus with data constructors (0, S, ...).

~ Add constructors Application won't cause a redex!

datatype Univ =

| C of string * Univ list

| Var of string * Univ list
| Clo of (Univ -> Univ)

Var x (vs @ [v])
C s (args @ [v])
fv

apply (Var x vs) v
apply (C s args) v
apply (Clo f) v

Constructors, Arity, ...

» Want lambda-calculus with data constructors (0, S, ...).

» Some functions have higher arity

min x 0 = X

min O y =y

min (Sx) (Sy) = S(minxy)
~ Add constructors

datatype Univ =

| C of string * Univ list

| Var of string * Univ list
| Clo of (Univ -> Univ)

Var x (vs @ [v])
C s (args @ [v])
fv

apply (Var x vs) v
apply (C s args) v
apply (Clo f) v

Constructors, Arity, ...

» Want lambda-calculus with data constructors (0, S, ...).

» Some functions have higher arity

min Xx 0 = X

min 0 y =y

min (Sx) (Sy) = S(minxy)
~» Add constructors, allow n-ary functions

datatype Univ =

| C of string * Univ list

| Var of string * Univ list

| Clo of int * (Univ list -> Univ)

Var x (vs @ [v])
C s (args @ [v])
fv

apply (Var x vs) v
apply (C s args) v
apply (Clo f) v

Constructors, Arity, ...

» Want lambda-calculus with data constructors (0, S, ...).
» Some functions have higher arity

min Xx 0 = X
min 0 y =y
min (Sx) (Sy) = S(minxy)
~» Add constructors, allow n-ary functions, partially applied

datatype Univ =

| C of string * Univ list

| Var of string * Univ list

| Clo of int * (Univ list -> Univ) * Univ list

apply (Var x vs) v = Var x (vs @ [v])
apply (C s args) v = C s (args @ [v])
apply (Clo 0 f vs) v =f (vs @ [v])
apply (Clon f vs) v = Clo (n-1) £ (vs @ [v])

Compiling Functions

» Still a little detail to solve: How do we translate functions?

Compiling Functions
» Still a little detail to solve: How do we translate functions?

» Example

apd Nil bs = bs
apd (Consaas) bs = Consa(apd as bs)

Compiling Functions

» Still a little detail to solve: How do we translate functions?

» Example
apd Nil bs = bs
apd (Consaas) bs = Consa(apd as bs)

» Just match against the constructors in Univ

fun apd [C "Nil" [], bs] = bs

| apd [C "Cons" [a, as], bs] = C "Cons" [a, apd as bs]

Compiling Functions

» Still a little detail to solve: How do we translate functions?

» Example
apd Nil bs = bs
apd (Consaas) bs = Consa(apd as bs)

» Just match against the constructors in Univ
Not exhaustive!! E.g., we have Var "x".

fun apd [C "Nil" [], bs] = bs

| apd [C "Cons" [a, as], bs] = C "Cons" [a, apd as bs]

Compiling Functions

» Still a little detail to solve: How do we translate functions?

» Example
apd Nil bs = bs
apd (Consaas) bs = Consa(apd as bs)

» Just match against the constructors in Univ
and add a default clause

fun apd [C "Nil" [], bs] = bs
| apd [C "Cons" [a, as], bs] = C "Cons" [a, apd as bs]
| apd [as, bs] = C "apd" [as,bs]

Compiling Functions

» Still a little detail to solve: How do we translate functions?
» Example with rewrite rule

apd Nil bs = bs
apd (Consaas) bs = Consa(apd as bs)
apd (apdas bs) c¢s = apd as (apd bs cs)

» Just match against the constructors in Univ
and add a default clause

fun apd [C "Nil" [], bs] = bs
| apd [C "Cons" [a, as], bs] = C "Cons" [a, apd as bs]
| apd [as, bs] = C "apd" [as,bs]

Compiling Functions

» Still a little detail to solve: How do we translate functions?
» Example with rewrite rule

apd Nil bs = bs
apd (Consaas) bs = Consa(apd as bs)
apd (apdas bs) c¢cs = apd as (apd bs cs)

» Just match against the constructors in Univ
and add a default clause
» For rewrite rules, match against the function “constructors”

fun apd [C "Nil" [], bs] = bs
| apd [C "Cons" [a, as], bs] = C "Cons" [a, apd as bs]
| apd [C "apd" [as, bsl], cs] =
apd [as, apd [bs, csl]
| apd [as, bs] = C "apd" [as,bs]

Formalisation in Isabelle

Models of ML-Terms and \-Terms

We use de Bruijn indices.

Models of ML-Terms and \-Terms

We use de Bruijn indices.

ML-terms consist of ML's A\-calculus

= C cname

| V nat

| A ml (ml list)
| Lam ml

ml

Models of ML-Terms and \-Terms

We use de Bruijn indices.

ML-terms consist of ML's A-calculus + constructors

ml

C cname

V' nat

A ml (ml list)

Lam ml

C cname (ml list)
Var nat (ml list)
Clo ml (ml list) nat

Models of ML-Terms and \-Terms

We use de Bruijn indices.

ML-terms consist of ML's A-calculus + constructors -+ functions

ml = C cname

| V nat

| A ml (ml list)

| Lam ml

| C cname (ml list)

| Var nat (ml list)

| Clo ml (ml list) nat
|

apply ml ml

Models of ML-Terms and \-Terms

We use de Bruijn indices.

ML-terms consist of ML's A-calculus + constructors -+ functions

ml = C cname

| V nat

| A ml (ml list)

| Lam ml

| C cname (ml list)

| Var nat (ml list)

| Clo ml (ml list) nat
|

apply ml ml

Abstract \-terms:

tm = C cname | V nat | tmetm | A\tm

Models of ML-Terms and \-Terms

We use de Bruijn indices.

ML-terms consist of ML's A-calculus + constructors -+ functions

ml = C cname

| V nat

| A ml (ml list)

| Lam ml

| C cname (ml list)

| Var nat (ml list)

| Clo ml (ml list) nat
|

apply ml ml

Abstract \-terms:

tm = C cname | V nat | tmetm | \tm | term ml

Reduction — on pure A-terms

Reduction — on pure A-terms

» (-reduction

Reduction — on pure A-terms

» (-reduction

> m-expansion

Reduction — on pure A-terms

» (-reduction
> m-expansion

> rewriting wrt R :: (cname X tm list X tm)set

Reduction — on pure A-terms

» [-reduction
> 7-expansion

> rewriting wrt R :: (cname x tm list X tm)set

(c,ts,t) € R
C ces map (subst o) ts — subst o t

Reduction — on pure A-terms

» [-reduction
> 7-expansion

> rewriting wrt R :: (cname x tm list X tm)set

(c,ts,t) € R
C ces map (subst o) ts — subst o t

where t"[t17~--7tn] = tetje---ot,

Reduction = on ML-terms

» (-reduction

Reduction = on ML-terms

» [-reduction

> rewriting wrt compR :: (cname x ml list x ml)set

(c,vs,v) € R Vn. closed(o n)

A (Cc) (map subst c) vs = subst o v

Reduction = on ML-terms

» [-reduction

> rewriting wrt compR :: (cname x ml list x ml)set

(c,vs,v) € R Vn. closed(o n)

A (Cc) (map subst c) vs = subst o v

» Reductions for apply, eg

apply (Clo 0 f vs) v. = Af (vsQ[v])

Reduction = on ML-terms

» [-reduction

> rewriting wrt compR :: (cname x ml list x ml)set

(c,vs,v) € R Vn. closed(o n)
A (Cc) (map subst c) vs = subst o v

» Reductions for apply, eg
apply (Clo 0 f vs) v. = Af (vsQ[v])
» Reductions for term, eg

term (Clo f vs n) =
A(term (apply (lift 0 (Clo f vs n)) (VarO0f[])))

Compilation from A-Terms to ML-terms

Two variants:

Compilation from A-Terms to ML-terms

Two variants:

» comp-fixed for compiling a term to be reduced

Compilation from A-Terms to ML-terms

Two variants:

» comp-fixed for compiling a term to be reduced
Treats variables as fixed: V +— Var

Compilation from A-Terms to ML-terms

Two variants:

» comp-fixed for compiling a term to be reduced
Treats variables as fixed: V +— Var

» comp-open for compiling rewrite rules

Compilation from A-Terms to ML-terms

Two variants:
» comp-fixed for compiling a term to be reduced
Treats variables as fixed: V +— Var

» comp-open for compiling rewrite rules
Treats variables as open: V — V

Compilation from A-Terms to ML-terms

Two variants:

» comp-fixed for compiling a term to be reduced
Treats variables as fixed: V +— Var

» comp-open for compiling rewrite rules
Treats variables as open: V — V

Rule compilation:

compR = ...comp-open...R...

Main Correctness Theorem

Main Correctness Theorem

If t and t' are pure A\-terms (no term)

Main Correctness Theorem

If t and t' are pure A\-terms (no term)

and term(comp-fixed t) =* t'

Main Correctness Theorem

If t and t' are pure A\-terms (no term)
and term(comp-fixed t) =* t'

then t —*t/

Statistics

Statistics

Size of theory: 1100 loc

Statistics

Size of theory: 1100 loc
Definitions: 30%

Statistics

Size of theory: 1100 loc
Definitions: 30%
Proofs about substitutions: 30%

Statistics

Size of theory: 1100 loc
Definitions: 30%
Proofs about substitutions: 30%

Main proof: 40%

Implementation

Implementation

» Builds on Isabelle’s code generation infrastructure

Implementation

» Builds on Isabelle’s code generation infrastructure
» 475 loc

Implementation

» Builds on Isabelle’s code generation infrastructure
» 475 loc

» Does not perform proofs,

Implementation

» Builds on Isabelle’s code generation infrastructure
» 475 loc

» Does not perform proofs, hence verification

Implementation

» Builds on Isabelle’s code generation infrastructure
» 475 loc
» Does not perform proofs, hence verification

» Typical performance figures:

Implementation

» Builds on Isabelle’s code generation infrastructure
» 475 loc
» Does not perform proofs, hence verification
» Typical performance figures:
100 x faster than simplifier

Implementation

» Builds on Isabelle’s code generation infrastructure
» 475 loc

» Does not perform proofs, hence verification

» Typical performance figures:

100 x faster than simplifier
10 x slower than direct compilation to ML

Related and Future Work

Related Work

Related Work

Berger, Eberl & Schwichtenberg [98/03]
Compiled NbE in Scheme/MINLOG
Kernel extension

Related Work

Berger, Eberl & Schwichtenberg [98/03]
Compiled NbE in Scheme/MINLOG
Kernel extension

Barras [TPHOLs 00]
Abstract machine for fast rewriting by inference in HOL

Related Work

Berger, Eberl & Schwichtenberg [98/03]

Compiled NbE in Scheme/MINLOG

Kernel extension

Barras [TPHOLs 00]

Abstract machine for fast rewriting by inference in HOL
Grégoire & Leroy [ICFP 02]

Abstract machine for fast normalization in Coq

Kernel extension
Verified

Future Work

Generalize:

Future Work

Generalize:

» Repeated variables on |hs

Future Work

Generalize:
» Repeated variables on |hs

» Ordered rewriting for permutative rules

Future Work

Generalize:
» Repeated variables on |hs
» Ordered rewriting for permutative rules

» Conditional rewriting?

Future Work

Generalize:
» Repeated variables on |hs
Ordered rewriting for permutative rules

>
» Conditional rewriting?
>

