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Normalization

Compute normal form of term wrt list of equations (incl /3)

Equations:
» Recursion equations with pattern matching:
5(x)+y=S(x+y)
» But also arbitrary term-rewriting rules:
(x+y)+z=x+(y+2)
Terms:
» Ground terms: S(0) + S(0) —* 5(5(0))
» But also free and bound variables:
Aa.S5(a) + S(b) —* Xa.5(S(a+ b))
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Normalization in Theorem Provers: Why and How

Why: Applications of fast evaluation/symbolic execution:
» Validation and testing
» Proofs involving complex computations
(4CT, Kepler Conjecture)
How:
1. Compile to ML-like language (with pattern-matching)
2. Evaluate
3. Read back

Bypass inference kernel.
Model and verify implementation.
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» But what about open terms?
» Even closed functions can only be presented
as Ax.t with x free in t
» So we do have to handle free variables!
» Need a data type containing both,
its own function space and free variables
» First attempt

datatype Univ =
| Var of string
| Clo of (Univ -> Univ)
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Handling of Variables (cont'd)

» Have to define what an application (Var "x") v means.
> An application  (xt)s never creates a new redex!

~» Can just collect the arguments

datatype Univ =
| Var of string * Univ list
| Clo of (Univ -> Univ)

apply (Var x vs) v = Var x (vs @ [v])
apply (Clo f) v=1~Ffv

» As Univ denotes normal terms, we can go back easily

term (Var x vs)
term (Clo f)

foldl Tapply (V x) (map term vs)
let x = new_var() in
Lam x (term (f x))
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Constructors, Arity, ...

» Want lambda-calculus with data constructors (0, S, ...).

~ Add constructors Application won't cause a redex!

datatype Univ =

| C of string * Univ list

| Var of string * Univ list
| Clo of (Univ -> Univ)

Var x (vs @ [v])
C s (args @ [v])
fv

apply (Var x vs) v
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Constructors, Arity, ...

» Want lambda-calculus with data constructors (0, S, ...).
» Some functions have higher arity

min Xx 0 = X
min 0 y =y
min (Sx) (Sy) = S(minxy)
~» Add constructors, allow n-ary functions, partially applied

datatype Univ =

| C of string * Univ list

| Var of string * Univ list

| Clo of int * (Univ list -> Univ) * Univ list

apply (Var x vs) v = Var x (vs @ [v])
apply (C s args) v = C s (args @ [v])
apply (Clo 0 f vs) v =f (vs @ [v])
apply (Clon f vs) v = Clo (n-1) £ (vs @ [v])
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Compiling Functions

» Still a little detail to solve: How do we translate functions?
» Example with rewrite rule

apd Nil bs = bs
apd (Consaas) bs = Consa(apd as bs)
apd (apdas bs) c¢cs = apd as (apd bs cs)

» Just match against the constructors in Univ
and add a default clause
» For rewrite rules, match against the function “constructors”

fun apd [C "Nil" [], bs] = bs
| apd [C "Cons" [a, as], bs] = C "Cons" [a, apd as bs]
| apd [C "apd" [as, bsl], cs] =
apd [as, apd [bs, csl]
| apd [as, bs] = C "apd" [as,bs]
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Models of ML-Terms and \-Terms

We use de Bruijn indices.

ML-terms consist of ML's A-calculus + constructors -+ functions

ml = C cname

| V nat

| A ml (ml list)

| Lam ml

| C cname (ml list)

| Var nat (ml list)

| Clo ml (ml list) nat
|

apply ml ml

Abstract \-terms:

tm = C cname | V nat | tmetm | \tm | term ml
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Reduction — on pure A-terms

» [-reduction
> 7-expansion

> rewriting wrt R :: (cname x tm list X tm)set

(c,ts,t) € R
C ces map (subst o) ts — subst o t

where t"[t17~--7tn] = tetje---ot,
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Reduction = on ML-terms

» [-reduction

> rewriting wrt compR :: (cname x ml list x ml)set

(c,vs,v) € R Vn. closed(o n)
A (Cc) (map subst c) vs = subst o v

» Reductions for apply, eg
apply (Clo 0 f vs) v. = Af (vsQ[v])
» Reductions for term, eg

term (Clo f vs n) =
A(term (apply (lift 0 (Clo f vs n)) (VarO0f[])))
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Compilation from A-Terms to ML-terms

Two variants:

» comp-fixed for compiling a term to be reduced
Treats variables as fixed: V +— Var

» comp-open for compiling rewrite rules
Treats variables as open: V — V

Rule compilation:

compR = ...comp-open...R...
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Main Correctness Theorem

If t and t' are pure A\-terms (no term)
and term(comp-fixed t) =* t'

then t —*t/
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Statistics

Size of theory: 1100 loc
Definitions: 30%
Proofs about substitutions: 30%

Main proof: 40%
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Implementation

» Builds on Isabelle’s code generation infrastructure
» 475 loc

» Does not perform proofs, hence verification

» Typical performance figures:

100 x faster than simplifier
10 x slower than direct compilation to ML
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Related Work

Berger, Eberl & Schwichtenberg [98/03]

Compiled NbE in Scheme/MINLOG

Kernel extension

Barras [TPHOLs 00]

Abstract machine for fast rewriting by inference in HOL
Grégoire & Leroy [ICFP 02]

Abstract machine for fast normalization in Coq

Kernel extension
Verified
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Generalize:
» Repeated variables on |hs
Ordered rewriting for permutative rules

>
» Conditional rewriting?
>



