
just, a generic open-source build system
Dept: Intelligent Cloud Technologies Lab, Huawei Munich Research Center
Author: Klaus Aehlig
Date: July 28, 2023

Build System Multi Repo Rules Rebuilding Non-Build Get it!

Introduction
• justbuild is an open-source software build system (Apache 2.0 license)

• Version 1.0.0 on December 12, 2022
• active ongoing development

• Designed and built from scratch
• no legacy requirements
• can explore new ideas (staging, target-level caching, . . .)

. . . but building on successful ideas of existing tools
• Recall: a build system

• computes a function (from source tree to artifacts)
• uses concepts meaningful to a programmer (“library”, “binary”, . . .)

not: individual compiler invocations, object files, . . .
• must be correct, should be fast

1 HUAWEI TECHNOLOGIES DUESSELDORF GMBH, Munich Research Center

Build System Multi Repo Rules Rebuilding Non-Build Get it!

just Example

$ cat TARGETS
{ "helloworld":
{ "type": ["@", "rules", "CC", "binary"]
, "name": ["helloworld"]
, "srcs": ["main.cpp"]
, "private-deps": ["libhello"]
}

, "libhello":
{ "type": ["@", "rules", "CC", "library"]
, "name": ["hello"]
, "srcs": ["hello.cpp"]
, "hdrs": ["hello.hpp"]
, "deps": ["utils"]
}

, "utils":
{ "type": ["@", "rules", "CC", "library"]
, "name": ["utils"]
, "srcs": ["utils.cpp"]
, "hdrs": ["utils.hpp"]
}

}
$

2 HUAWEI TECHNOLOGIES DUESSELDORF GMBH, Munich Research Center

Build System Multi Repo Rules Rebuilding Non-Build Get it!

just Example

$ cat TARGETS
{ "helloworld":
{ "type": ["@", "rules", "CC", "binary"]
, "name": ["helloworld"]
, "srcs": ["main.cpp"]
, "private-deps": ["libhello"]
}

, "libhello":
{ "type": ["@", "rules", "CC", "library"]
, "name": ["hello"]
, "srcs": ["hello.cpp"]
, "hdrs": ["hello.hpp"]
, "deps": ["utils"]
}

, "utils":
{ "type": ["@", "rules", "CC", "library"]
, "name": ["utils"]
, "srcs": ["utils.cpp"]
, "hdrs": ["utils.hpp"]
}

}
$

helloworld

libhello

defaults

utils

2 HUAWEI TECHNOLOGIES DUESSELDORF GMBH, Munich Research Center

Build System Multi Repo Rules Rebuilding Non-Build Get it!

just Example

helloworld

libhello

defaults

utils

2 HUAWEI TECHNOLOGIES DUESSELDORF GMBH, Munich Research Center

Build System Multi Repo Rules Rebuilding Non-Build Get it!

just Example

helloworld

libhello

defaults

utils
c++

hello.o

c++

utils.o

c++

main.o

c++

helloworld

ar

libutils.a ar

libhello.a

.hello.cpphello.hpp

.

. utils.cpp utils.hpp

main.cpp

2 HUAWEI TECHNOLOGIES DUESSELDORF GMBH, Munich Research Center

Build System Multi Repo Rules Rebuilding Non-Build Get it!

just Example

c++

hello.o

c++

utils.o

c++

main.o

c++

helloworld

ar

libutils.a ar

libhello.a

.hello.cpphello.hpp

.

. utils.cpp utils.hpp

main.cpp

2 HUAWEI TECHNOLOGIES DUESSELDORF GMBH, Munich Research Center

Build System Multi Repo Rules Rebuilding Non-Build Get it!

just Example

c++

hello.o

c++

utils.o

c++

main.o

c++

helloworld

ar

libutils.a ar

libhello.a

.hello.cpphello.hpp

.

. utils.cpp utils.hpp

main.cpp

$ just build -C repos.json helloworld
INFO: Requested target is [["@","","","helloworld"],{}]
INFO: Analysed target [["@","","","helloworld"],{}]
INFO: Discovered 6 actions, 3 trees, 0 blobs
INFO: Building [["@","","","helloworld"],{}].
INFO: Processed 6 actions, 0 cache hits.
INFO: Artifacts built, logical paths are:

helloworld [9dafb06bf5eacc62eb8f538ab1e4dab8a6339dc3:24704:x]
$

$ just install -C repos.json -o . helloworld
INFO: Requested target is [["@","","","helloworld"],{}]
INFO: Analysed target [["@","","","helloworld"],{}]
INFO: Discovered 6 actions, 3 trees, 0 blobs
INFO: Building [["@","","","helloworld"],{}].
INFO: Processed 6 actions, 6 cache hits.
INFO: Artifacts can be found in:

/worker/build/62dbe7fb60915e38/root/work/helloworld/./helloworld [9dafb06bf5eacc62eb8f538ab1e4dab8a6339dc3:24704:x]
$

$./helloworld
Hello World!
$

2 HUAWEI TECHNOLOGIES DUESSELDORF GMBH, Munich Research Center

Build System Multi Repo Rules Rebuilding Non-Build Get it!

just Example

c++

hello.o

c++

utils.o

c++

main.o

c++

helloworld

ar

libutils.a ar

libhello.a

.hello.cpphello.hpp

.

. utils.cpp utils.hpp

main.cpp

$ just build -C repos.json helloworld
INFO: Requested target is [["@","","","helloworld"],{}]
INFO: Analysed target [["@","","","helloworld"],{}]
INFO: Discovered 6 actions, 3 trees, 0 blobs
INFO: Building [["@","","","helloworld"],{}].
INFO: Processed 6 actions, 0 cache hits.
INFO: Artifacts built, logical paths are:

helloworld [9dafb06bf5eacc62eb8f538ab1e4dab8a6339dc3:24704:x]
$

$ just install -C repos.json -o . helloworld
INFO: Requested target is [["@","","","helloworld"],{}]
INFO: Analysed target [["@","","","helloworld"],{}]
INFO: Discovered 6 actions, 3 trees, 0 blobs
INFO: Building [["@","","","helloworld"],{}].
INFO: Processed 6 actions, 6 cache hits.
INFO: Artifacts can be found in:

/worker/build/62dbe7fb60915e38/root/work/helloworld/./helloworld [9dafb06bf5eacc62eb8f538ab1e4dab8a6339dc3:24704:x]
$

$./helloworld
Hello World!
$

2 HUAWEI TECHNOLOGIES DUESSELDORF GMBH, Munich Research Center

Build System Multi Repo Rules Rebuilding Non-Build Get it!

just Example

c++

hello.o

c++

utils.o

c++

main.o

c++

helloworld

ar

libutils.a ar

libhello.a

.hello.cpphello.hpp

.

. utils.cpp utils.hpp

main.cpp

$ just build -C repos.json helloworld
INFO: Requested target is [["@","","","helloworld"],{}]
INFO: Analysed target [["@","","","helloworld"],{}]
INFO: Discovered 6 actions, 3 trees, 0 blobs
INFO: Building [["@","","","helloworld"],{}].
INFO: Processed 6 actions, 0 cache hits.
INFO: Artifacts built, logical paths are:

helloworld [9dafb06bf5eacc62eb8f538ab1e4dab8a6339dc3:24704:x]
$

$ just install -C repos.json -o . helloworld
INFO: Requested target is [["@","","","helloworld"],{}]
INFO: Analysed target [["@","","","helloworld"],{}]
INFO: Discovered 6 actions, 3 trees, 0 blobs
INFO: Building [["@","","","helloworld"],{}].
INFO: Processed 6 actions, 6 cache hits.
INFO: Artifacts can be found in:

/worker/build/62dbe7fb60915e38/root/work/helloworld/./helloworld [9dafb06bf5eacc62eb8f538ab1e4dab8a6339dc3:24704:x]
$

$./helloworld
Hello World!
$

2 HUAWEI TECHNOLOGIES DUESSELDORF GMBH, Munich Research Center

Build System Multi Repo Rules Rebuilding Non-Build Get it!

Remote Build Execution

A remote build execution system consists of

• a Content-Adressable Store (CAS)
• the actual execution service

3 HUAWEI TECHNOLOGIES DUESSELDORF GMBH, Munich Research Center

Build System Multi Repo Rules Rebuilding Non-Build Get it!

Remote Build Execution

CAS
A remote build execution system consists of

• a Content-Adressable Store (CAS)
(files, indexed by (essentially) their hash)

• the actual execution service

3 HUAWEI TECHNOLOGIES DUESSELDORF GMBH, Munich Research Center

Build System Multi Repo Rules Rebuilding Non-Build Get it!

Remote Build Execution

CAS

service

exec

remoteA remote build execution system consists of
• a Content-Adressable Store (CAS)

(files, indexed by (essentially) their hash)
• the actual execution service

• using many workers, sharing files via the CAS
• using an action cache (AC)

3 HUAWEI TECHNOLOGIES DUESSELDORF GMBH, Munich Research Center

Build System Multi Repo Rules Rebuilding Non-Build Get it!

Remote Build Execution

CAS worker

service

exec

remoteA remote build execution system consists of
• a Content-Adressable Store (CAS)

(files, indexed by (essentially) their hash)
• the actual execution service

• using many workers, sharing files via the CAS

• using an action cache (AC)

3 HUAWEI TECHNOLOGIES DUESSELDORF GMBH, Munich Research Center

Build System Multi Repo Rules Rebuilding Non-Build Get it!

Remote Build Execution

CAS worker

service

exec

remote

cache

action

A remote build execution system consists of
• a Content-Adressable Store (CAS)

(files, indexed by (essentially) their hash)
• the actual execution service

• using many workers, sharing files via the CAS
• using an action cache (AC)

3 HUAWEI TECHNOLOGIES DUESSELDORF GMBH, Munich Research Center

Build System Multi Repo Rules Rebuilding Non-Build Get it!

Remote Build Execution

CAS worker

service

exec

remote

cache

action

A remote build execution system consists of
• a Content-Adressable Store (CAS)
• the actual execution service

3 HUAWEI TECHNOLOGIES DUESSELDORF GMBH, Munich Research Center

Build System Multi Repo Rules Rebuilding Non-Build Get it!

Remote Build Execution

CAS worker
service
exec
remote

cache
action

where needed
upload files

A remote build execution system consists of
• a Content-Adressable Store (CAS)
• the actual execution service

To execute an action

upload, request, receive answer

• files unknown to the CAS are uploaded

• the action is requested
• a description of the output is received, typically from AC
• actual artifacts can be downloaded from CAS, should they be needed

3 HUAWEI TECHNOLOGIES DUESSELDORF GMBH, Munich Research Center

Build System Multi Repo Rules Rebuilding Non-Build Get it!

Remote Build Execution

CAS worker
service
exec
remote

cache
action

where needed
upload files

request
send

A remote build execution system consists of
• a Content-Adressable Store (CAS)
• the actual execution service

To execute an action

upload, request, receive answer

• files unknown to the CAS are uploaded
• the action is requested

• a description of the output is received, typically from AC
• actual artifacts can be downloaded from CAS, should they be needed

3 HUAWEI TECHNOLOGIES DUESSELDORF GMBH, Munich Research Center

Build System Multi Repo Rules Rebuilding Non-Build Get it!

Remote Build Execution

CAS worker
service
exec
remote

cache
action

where needed
upload files

request
send

description
result
receive

A remote build execution system consists of
• a Content-Adressable Store (CAS)
• the actual execution service

To execute an action

upload, request, receive answer

• files unknown to the CAS are uploaded
• the action is requested
• a description of the output is received, typically from AC

• actual artifacts can be downloaded from CAS, should they be needed

3 HUAWEI TECHNOLOGIES DUESSELDORF GMBH, Munich Research Center

Build System Multi Repo Rules Rebuilding Non-Build Get it!

Remote Build Execution

CAS worker
service
exec
remote

cache
action

where needed
upload files

request
send

description
result
receive

A remote build execution system consists of
• a Content-Adressable Store (CAS)
• the actual execution service

To execute an action

upload, request, receive answer

• files unknown to the CAS are uploaded
• the action is requested
• a description of the output is received, typically from AC
• actual artifacts can be downloaded from CAS, should they be needed

3 HUAWEI TECHNOLOGIES DUESSELDORF GMBH, Munich Research Center

Build System Multi Repo Rules Rebuilding Non-Build Get it!

Remote Build Execution

CAS worker
service
exec
remote

cache
action

where needed
upload files

request
send

description
result
receive

A remote build execution system consists of
• a Content-Adressable Store (CAS)
• the actual execution service

To execute an action upload, request, receive answer

3 HUAWEI TECHNOLOGIES DUESSELDORF GMBH, Munich Research Center

Build System Multi Repo Rules Rebuilding Non-Build Get it!

Remote Build Execution

CAS worker
service
exec
remote

cache
action

where needed
upload files

request
send

description
result
receive

A remote build execution system consists of
• a Content-Adressable Store (CAS)
• the actual execution service

To execute an action upload, request, receive answer

Benefits of remote execution
• every action executed in isolation; dependencies are correct
• AC can be shared between developpers
• better parallelism

3 HUAWEI TECHNOLOGIES DUESSELDORF GMBH, Munich Research Center

Build System Multi Repo Rules Rebuilding Non-Build Get it!

Remote Build Execution

CAS worker
service
exec
remote

cache
action

where needed
upload files

request
send

description
result
receive

A remote build execution system consists of
• a Content-Adressable Store (CAS)
• the actual execution service

To execute an action upload, request, receive answer

Benefits of remote execution
• every action executed in isolation; dependencies are correct
• AC can be shared between developpers
• better parallelism

But also works locally!
 actions can have their own view and output convention (conflict-free by design)

3 HUAWEI TECHNOLOGIES DUESSELDORF GMBH, Munich Research Center

Build System Multi Repo Rules Rebuilding Non-Build Get it!

Remote Build Execution

CAS worker
service
exec
remote

cache
action

where needed
upload files

request
send

description
result
receive

A remote build execution system consists of
• a Content-Adressable Store (CAS)
• the actual execution service

To execute an action upload, request, receive answer

Benefits of remote execution
• every action executed in isolation; dependencies are correct
• AC can be shared between developpers
• better parallelism

But also works locally!
 actions can have their own view and output convention (conflict-free by design)

As people use git as VCS, let’s use git blob/tree identifiers everywhere!
3 HUAWEI TECHNOLOGIES DUESSELDORF GMBH, Munich Research Center

Build System Multi Repo Rules Rebuilding Non-Build Get it!

Multi-Repository Builds

• Code can be split over many repositories
(also good do avoid duplication, e.g., rules)

• Have to refer to other repositories
• agreeing on global names doesn’t work
• often “any libfoo will do”

 use local names and bind in a project configuration (get DFA)

• Repo semantics must be independent of caller—or if “main” repository
 let targets decide where to logically place artifacts; we have staging anyway

• As location doesn’t matter, can as well use git trees as roots quickly get blob ids
(and use one default repository to store everything)

• Additional benefit: target-level caching if reachable part of DFA unchanged
(minimal DFA as canonical representation; plus target name, configuration)
 keep graphs to handle small; still flexible to build in di�erent configurations

4 HUAWEI TECHNOLOGIES DUESSELDORF GMBH, Munich Research Center

Build System Multi Repo Rules Rebuilding Non-Build Get it!

Multi-Repository Builds

• Code can be split over many repositories
(also good do avoid duplication, e.g., rules)

• Have to refer to other repositories
• agreeing on global names doesn’t work
• often “any libfoo will do”

 use local names and bind in a project configuration (get DFA)
• Repo semantics must be independent of caller—or if “main” repository
 let targets decide where to logically place artifacts; we have staging anyway

• As location doesn’t matter, can as well use git trees as roots quickly get blob ids
(and use one default repository to store everything)

• Additional benefit: target-level caching if reachable part of DFA unchanged
(minimal DFA as canonical representation; plus target name, configuration)
 keep graphs to handle small; still flexible to build in di�erent configurations

4 HUAWEI TECHNOLOGIES DUESSELDORF GMBH, Munich Research Center

Build System Multi Repo Rules Rebuilding Non-Build Get it!

Multi-Repository Builds

rules ssl

zlib

base

cares

ssl rules

zlib

toolchain

ruleszlib

libgit2

libcurl

protoc

libarchive

grpc

json

bazel_remote_apis

fmt

gsl

cli11

ssl

rules

googleapis

rules lzma sslbzip2

zlib

base

rules

protobuf

cares

re2rules absl

libssl

google_apis

zlib

rules

rules

google_apis

rules

grpc

rules

base

protoc rules

rules

rules

base

base base

rules

rules

base base

base

protoc

grpc

rules rules

patches

base

base rules

• Code can be split over many repositories
(also good do avoid duplication, e.g., rules)

• Have to refer to other repositories
• agreeing on global names doesn’t work
• often “any libfoo will do”

 use local names and bind in a project configuration (get DFA)

• Repo semantics must be independent of caller—or if “main” repository
 let targets decide where to logically place artifacts; we have staging anyway

• As location doesn’t matter, can as well use git trees as roots quickly get blob ids
(and use one default repository to store everything)

• Additional benefit: target-level caching if reachable part of DFA unchanged
(minimal DFA as canonical representation; plus target name, configuration)
 keep graphs to handle small; still flexible to build in di�erent configurations

4 HUAWEI TECHNOLOGIES DUESSELDORF GMBH, Munich Research Center

Build System Multi Repo Rules Rebuilding Non-Build Get it!

Multi-Repository Builds

rules ssl

zlib

base

cares

ssl rules

zlib

toolchain

ruleszlib

libgit2

libcurl

protoc

libarchive

grpc

json

bazel_remote_apis

fmt

gsl

cli11

ssl

rules

googleapis

rules lzma sslbzip2

zlib

base

rules

protobuf

cares

re2rules absl

libssl

google_apis

zlib

rules

rules

google_apis

rules

grpc

rules

base

protoc rules

rules

rules

base

base base

rules

rules

base base

base

protoc

grpc

rules rules

patches

base

base rules

• Code can be split over many repositories
(also good do avoid duplication, e.g., rules)

• Have to refer to other repositories
• agreeing on global names doesn’t work
• often “any libfoo will do”

 use local names and bind in a project configuration (get DFA)
• Repo semantics must be independent of caller—or if “main” repository
 let targets decide where to logically place artifacts; we have staging anyway

• As location doesn’t matter, can as well use git trees as roots quickly get blob ids
(and use one default repository to store everything)

• Additional benefit: target-level caching if reachable part of DFA unchanged
(minimal DFA as canonical representation; plus target name, configuration)
 keep graphs to handle small; still flexible to build in di�erent configurations

4 HUAWEI TECHNOLOGIES DUESSELDORF GMBH, Munich Research Center

Build System Multi Repo Rules Rebuilding Non-Build Get it!

Multi-Repository Builds

rules ssl

zlib

base

cares

ssl rules

zlib

toolchain

ruleszlib

libgit2

libcurl

protoc

libarchive

grpc

json

bazel_remote_apis

fmt

gsl

cli11

ssl

rules

googleapis

rules lzma sslbzip2

zlib

base

rules

protobuf

cares

re2rules absl

libssl

google_apis

zlib

rules

rules

google_apis

rules

grpc

rules

base

protoc rules

rules

rules

base

base base

rules

rules

base base

base

protoc

grpc

rules rules

patches

base

base rules

• Code can be split over many repositories
(also good do avoid duplication, e.g., rules)

• Have to refer to other repositories
• agreeing on global names doesn’t work
• often “any libfoo will do”

 use local names and bind in a project configuration (get DFA)
• Repo semantics must be independent of caller—or if “main” repository
 let targets decide where to logically place artifacts; we have staging anyway

• As location doesn’t matter, can as well use git trees as roots quickly get blob ids
(and use one default repository to store everything)

• Additional benefit: target-level caching if reachable part of DFA unchanged
(minimal DFA as canonical representation; plus target name, configuration)
 keep graphs to handle small; still flexible to build in di�erent configurations

4 HUAWEI TECHNOLOGIES DUESSELDORF GMBH, Munich Research Center

Build System Multi Repo Rules Rebuilding Non-Build Get it!

Multi-Repository Builds

rules ssl

zlib

base

cares

ssl rules

zlib

toolchain

ruleszlib

libgit2

libcurl

protoc

libarchive

grpc

json

bazel_remote_apis

fmt

gsl

cli11

ssl

rules

googleapis

rules lzma sslbzip2

zlib

base

rules

protobuf

cares

re2rules absl

libssl

google_apis

zlib

rules

rules

google_apis

rules

grpc

rules

base

protoc rules

rules

rules

base

base base

rules

rules

base base

base

protoc

grpc

rules rules

patches

base

base rules

• Code can be split over many repositories
(also good do avoid duplication, e.g., rules)

• Have to refer to other repositories
• agreeing on global names doesn’t work
• often “any libfoo will do”

 use local names and bind in a project configuration (get DFA)
• Repo semantics must be independent of caller—or if “main” repository
 let targets decide where to logically place artifacts; we have staging anyway

• As location doesn’t matter, can as well use git trees as roots quickly get blob ids
(and use one default repository to store everything)

• Additional benefit: target-level caching if reachable part of DFA unchanged
(minimal DFA as canonical representation; plus target name, configuration)
 keep graphs to handle small; still flexible to build in di�erent configurations

4 HUAWEI TECHNOLOGIES DUESSELDORF GMBH, Munich Research Center

Build System Multi Repo Rules Rebuilding Non-Build Get it!

Getting Started

{ "repositories":
{ "":
{ "repository": {"type": "file", "path": "src"}
, "bindings": {"rules": "rules-cc"}
}

, "test":
{ "repository": {"type": "file", "path": "test"}
, "bindings": {"rules": "rules-cc", "src": ""}
}

}
}

#!/bin/sh
set -eu
readonly ROOT=$(readlink -f $(dirname $0)/..)

just-import-git -C ${ROOT}/etc/repos.template.json \
--as rules-cc -b master \
https://github.com/just-buildsystem/rules-cc \

| cfmtjson \
> ${ROOT}/etc/repos.json

• Start with multi-repo right away
• rules from a seperate repository
• src versus test

 template with the local repositories (at etc/repos.template.json)
• Programmatic imports via just-import-git

• Repository plus transitive dependencies
• file repositories become subdirs of the git tree
• Appropriate renaming to avoid conflicts

 Complete etc/repos.json with pinned commits
(simple update by running the import script again)

• Simply use by: just-mr build
(or just-mr --main test build)

• just-mr fetches the dependencies (if commit not present already)
• then launches just with the correct repository configuration

5 HUAWEI TECHNOLOGIES DUESSELDORF GMBH, Munich Research Center

Build System Multi Repo Rules Rebuilding Non-Build Get it!

Getting Started
{ "repositories":
{ "":
{ "repository": {"type": "file", "path": "src"}
, "bindings": {"rules": "rules-cc"}
}

, "test":
{ "repository": {"type": "file", "path": "test"}
, "bindings": {"rules": "rules-cc", "src": ""}
}

}
}

#!/bin/sh
set -eu
readonly ROOT=$(readlink -f $(dirname $0)/..)

just-import-git -C ${ROOT}/etc/repos.template.json \
--as rules-cc -b master \
https://github.com/just-buildsystem/rules-cc \

| cfmtjson \
> ${ROOT}/etc/repos.json

• Start with multi-repo right away
• rules from a seperate repository
• src versus test

 template with the local repositories (at etc/repos.template.json)

• Programmatic imports via just-import-git
• Repository plus transitive dependencies
• file repositories become subdirs of the git tree
• Appropriate renaming to avoid conflicts

 Complete etc/repos.json with pinned commits
(simple update by running the import script again)

• Simply use by: just-mr build
(or just-mr --main test build)

• just-mr fetches the dependencies (if commit not present already)
• then launches just with the correct repository configuration

5 HUAWEI TECHNOLOGIES DUESSELDORF GMBH, Munich Research Center

Build System Multi Repo Rules Rebuilding Non-Build Get it!

Getting Started
{ "repositories":
{ "":
{ "repository": {"type": "file", "path": "src"}
, "bindings": {"rules": "rules-cc"}
}

, "test":
{ "repository": {"type": "file", "path": "test"}
, "bindings": {"rules": "rules-cc", "src": ""}
}

}
}

#!/bin/sh
set -eu
readonly ROOT=$(readlink -f $(dirname $0)/..)

just-import-git -C ${ROOT}/etc/repos.template.json \
--as rules-cc -b master \
https://github.com/just-buildsystem/rules-cc \

| cfmtjson \
> ${ROOT}/etc/repos.json

• Start with multi-repo right away
• rules from a seperate repository
• src versus test

 template with the local repositories (at etc/repos.template.json)
• Programmatic imports via just-import-git

• Repository plus transitive dependencies
• file repositories become subdirs of the git tree
• Appropriate renaming to avoid conflicts

 Complete etc/repos.json with pinned commits
(simple update by running the import script again)

• Simply use by: just-mr build
(or just-mr --main test build)

• just-mr fetches the dependencies (if commit not present already)
• then launches just with the correct repository configuration

5 HUAWEI TECHNOLOGIES DUESSELDORF GMBH, Munich Research Center

Build System Multi Repo Rules Rebuilding Non-Build Get it!

Getting Started
{ "repositories":
{ "":
{ "repository": {"type": "file", "path": "src"}
, "bindings": {"rules": "rules-cc"}
}

, "test":
{ "repository": {"type": "file", "path": "test"}
, "bindings": {"rules": "rules-cc", "src": ""}
}

}
}

#!/bin/sh
set -eu
readonly ROOT=$(readlink -f $(dirname $0)/..)

just-import-git -C ${ROOT}/etc/repos.template.json \
--as rules-cc -b master \
https://github.com/just-buildsystem/rules-cc \

| cfmtjson \
> ${ROOT}/etc/repos.json

• Start with multi-repo right away
• rules from a seperate repository
• src versus test

 template with the local repositories (at etc/repos.template.json)
• Programmatic imports via just-import-git

• Repository plus transitive dependencies
• file repositories become subdirs of the git tree
• Appropriate renaming to avoid conflicts

 Complete etc/repos.json with pinned commits
(simple update by running the import script again)

• Simply use by: just-mr build
(or just-mr --main test build)

• just-mr fetches the dependencies (if commit not present already)
• then launches just with the correct repository configuration

5 HUAWEI TECHNOLOGIES DUESSELDORF GMBH, Munich Research Center

Build System Multi Repo Rules Rebuilding Non-Build Get it!

Getting Started
{ "repositories":
{ "":
{ "repository": {"type": "file", "path": "src"}
, "bindings": {"rules": "rules-cc"}
}

, "test":
{ "repository": {"type": "file", "path": "test"}
, "bindings": {"rules": "rules-cc", "src": ""}
}

}
}

#!/bin/sh
set -eu
readonly ROOT=$(readlink -f $(dirname $0)/..)

just-import-git -C ${ROOT}/etc/repos.template.json \
--as rules-cc -b master \
https://github.com/just-buildsystem/rules-cc \

| cfmtjson \
> ${ROOT}/etc/repos.json

• Start with multi-repo right away
• rules from a seperate repository
• src versus test

 template with the local repositories (at etc/repos.template.json)
• Programmatic imports via just-import-git

• Repository plus transitive dependencies
• file repositories become subdirs of the git tree
• Appropriate renaming to avoid conflicts

 Complete etc/repos.json with pinned commits
(simple update by running the import script again)

• Simply use by: just-mr build
(or just-mr --main test build)

• just-mr fetches the dependencies (if commit not present already)
• then launches just with the correct repository configuration

5 HUAWEI TECHNOLOGIES DUESSELDORF GMBH, Munich Research Center

Build System Multi Repo Rules Rebuilding Non-Build Get it!

Rules: Data of a Target

• Rules are used to describe targets of a given type, like a C++ library

• Targets are given by

• the actual artifact, like libfoo.a
• additional files that should be installed with the target, like headers
• any additional information needed to use the target

(no reflection on the dependency graph!)
• Headers of public dependencies
• Information on how to link, including libraries depended upon
• . . .

6 HUAWEI TECHNOLOGIES DUESSELDORF GMBH, Munich Research Center

Build System Multi Repo Rules Rebuilding Non-Build Get it!

Rules: Data of a Target

• Rules are used to describe targets of a given type, like a C++ library
• Targets are given by

• the actual artifact, like libfoo.a
• additional files that should be installed with the target, like headers
• any additional information needed to use the target

(no reflection on the dependency graph!)
• Headers of public dependencies
• Information on how to link, including libraries depended upon
• . . .

6 HUAWEI TECHNOLOGIES DUESSELDORF GMBH, Munich Research Center

Build System Multi Repo Rules Rebuilding Non-Build Get it!

Rules: Data of a Target

• Rules are used to describe targets of a given type, like a C++ library
• Targets are given by

• the actual artifact, like libfoo.a

• additional files that should be installed with the target, like headers
• any additional information needed to use the target

(no reflection on the dependency graph!)
• Headers of public dependencies
• Information on how to link, including libraries depended upon
• . . .

6 HUAWEI TECHNOLOGIES DUESSELDORF GMBH, Munich Research Center

Build System Multi Repo Rules Rebuilding Non-Build Get it!

Rules: Data of a Target

• Rules are used to describe targets of a given type, like a C++ library
• Targets are given by

• the actual artifact, like libfoo.a
• additional files that should be installed with the target, like headers

• any additional information needed to use the target
(no reflection on the dependency graph!)

• Headers of public dependencies
• Information on how to link, including libraries depended upon
• . . .

6 HUAWEI TECHNOLOGIES DUESSELDORF GMBH, Munich Research Center

Build System Multi Repo Rules Rebuilding Non-Build Get it!

Rules: Data of a Target

• Rules are used to describe targets of a given type, like a C++ library
• Targets are given by

• the actual artifact, like libfoo.a
• additional files that should be installed with the target, like headers
• any additional information needed to use the target

(no reflection on the dependency graph!)
• Headers of public dependencies
• Information on how to link, including libraries depended upon
• . . .

6 HUAWEI TECHNOLOGIES DUESSELDORF GMBH, Munich Research Center

Build System Multi Repo Rules Rebuilding Non-Build Get it!

Rules: Data of a Target (Example)

$ cat TARGETS
{ "helloworld":
{ "type": ["@", "rules", "CC", "binary"]
, "name": ["helloworld"]
, "srcs": ["main.cpp"]
, "private-deps": ["libhello"]
}

, "libhello":
{ "type": ["@", "rules", "CC", "library"]
, "name": ["hello"]
, "srcs": ["hello.cpp"]
, "hdrs": ["hello.hpp"]
, "deps": ["utils"]
}

, "utils":
{ "type": ["@", "rules", "CC", "library"]
, "name": ["utils"]
, "srcs": ["utils.cpp"]
, "hdrs": ["utils.hpp"]
}

}
$

7 HUAWEI TECHNOLOGIES DUESSELDORF GMBH, Munich Research Center

Build System Multi Repo Rules Rebuilding Non-Build Get it!

Rules: Data of a Target (Example)

$ just analyse -C repos.json libhello
INFO: Requested target is [["@","","","libhello"],{}]
INFO: Result of target [["@","","","libhello"],{}]: {

"artifacts": {
"libhello.a": {"data":{"id":"bfd40392f507f1cea464b32003b0b7f79f70cf2f","path":"libhello.a"},"type":"ACTION"}

},
"provides": {
"compile-args": [
],
"compile-deps": {
"utils.hpp": {"data":{"path":"utils.hpp","repository":""},"type":"LOCAL"}

},
"link-args": [
"libhello.a",
"libutils.a"

],
"link-deps": {
"libutils.a": {"data":{"id":"b8b7e151fc1a3c73f7cd3b8d6f6bcc2a353493a1","path":"libutils.a"},"type":"ACTION"}

},
"package": {
"cflags-files": {},
"ldflags-files": {},
"name": "hello"

}
},
"runfiles": {
"hello.hpp": {"data":{"path":"hello.hpp","repository":""},"type":"LOCAL"}

}
}

$

7 HUAWEI TECHNOLOGIES DUESSELDORF GMBH, Munich Research Center

Build System Multi Repo Rules Rebuilding Non-Build Get it!

Rule Language
Rules are mainly given by a functional expression defining this value; language

• variables, let*-binding, conditional expressions, . . .
• constructor functions for lists, maps, . . .
• standard operations: accessor functions, concatenation, iteration (lists/maps),
foldl, (conflict-free) map union, nub right, . . .

• Accessor functions to the data of the targets in the target fields
• actions are a means to define artifacts

• function returning a map of the output artifacts
• inputs: stage of input artifacts, command vector, environment, expected outputs

(as well as execution properties, timeout-related information, . . .)
• mathematical function intensional equality on artifacts

8 HUAWEI TECHNOLOGIES DUESSELDORF GMBH, Munich Research Center

Build System Multi Repo Rules Rebuilding Non-Build Get it!

Rule Language
Rules are mainly given by a functional expression defining this value; language

• variables, let*-binding, conditional expressions, . . .
• constructor functions for lists, maps, . . .
• standard operations: accessor functions, concatenation, iteration (lists/maps),
foldl, (conflict-free) map union, nub right, . . .

• Accessor functions to the data of the targets in the target fields
• actions are a means to define artifacts

• function returning a map of the output artifacts
• inputs: stage of input artifacts, command vector, environment, expected outputs

(as well as execution properties, timeout-related information, . . .)
• mathematical function intensional equality on artifacts

8 HUAWEI TECHNOLOGIES DUESSELDORF GMBH, Munich Research Center

Build System Multi Repo Rules Rebuilding Non-Build Get it!

Rule Language
Rules are mainly given by a functional expression defining this value; language

• variables, let*-binding, conditional expressions, . . .
• constructor functions for lists, maps, . . .
• standard operations: accessor functions, concatenation, iteration (lists/maps),
foldl, (conflict-free) map union, nub right, . . .

• Accessor functions to the data of the targets in the target fields

• actions are a means to define artifacts

• function returning a map of the output artifacts
• inputs: stage of input artifacts, command vector, environment, expected outputs

(as well as execution properties, timeout-related information, . . .)
• mathematical function intensional equality on artifacts

8 HUAWEI TECHNOLOGIES DUESSELDORF GMBH, Munich Research Center

Build System Multi Repo Rules Rebuilding Non-Build Get it!

Rule Language
Rules are mainly given by a functional expression defining this value; language

• variables, let*-binding, conditional expressions, . . .
• constructor functions for lists, maps, . . .
• standard operations: accessor functions, concatenation, iteration (lists/maps),
foldl, (conflict-free) map union, nub right, . . .

• Accessor functions to the data of the targets in the target fields
• actions are a means to define artifacts

• function returning a map of the output artifacts
• inputs: stage of input artifacts, command vector, environment, expected outputs

(as well as execution properties, timeout-related information, . . .)
• mathematical function intensional equality on artifacts

8 HUAWEI TECHNOLOGIES DUESSELDORF GMBH, Munich Research Center

Build System Multi Repo Rules Rebuilding Non-Build Get it!

Rule Language
Rules are mainly given by a functional expression defining this value; language

• variables, let*-binding, conditional expressions, . . .
• constructor functions for lists, maps, . . .
• standard operations: accessor functions, concatenation, iteration (lists/maps),
foldl, (conflict-free) map union, nub right, . . .

• Accessor functions to the data of the targets in the target fields
• actions are a means to define artifacts

• function returning a map of the output artifacts

• inputs: stage of input artifacts, command vector, environment, expected outputs
(as well as execution properties, timeout-related information, . . .)

• mathematical function intensional equality on artifacts

8 HUAWEI TECHNOLOGIES DUESSELDORF GMBH, Munich Research Center

Build System Multi Repo Rules Rebuilding Non-Build Get it!

Rule Language
Rules are mainly given by a functional expression defining this value; language

• variables, let*-binding, conditional expressions, . . .
• constructor functions for lists, maps, . . .
• standard operations: accessor functions, concatenation, iteration (lists/maps),
foldl, (conflict-free) map union, nub right, . . .

• Accessor functions to the data of the targets in the target fields
• actions are a means to define artifacts

• function returning a map of the output artifacts
• inputs: stage of input artifacts, command vector, environment, expected outputs

(as well as execution properties, timeout-related information, . . .)

• mathematical function intensional equality on artifacts

8 HUAWEI TECHNOLOGIES DUESSELDORF GMBH, Munich Research Center

Build System Multi Repo Rules Rebuilding Non-Build Get it!

Rule Language
Rules are mainly given by a functional expression defining this value; language

• variables, let*-binding, conditional expressions, . . .
• constructor functions for lists, maps, . . .
• standard operations: accessor functions, concatenation, iteration (lists/maps),
foldl, (conflict-free) map union, nub right, . . .

• Accessor functions to the data of the targets in the target fields
• actions are a means to define artifacts

• function returning a map of the output artifacts
• inputs: stage of input artifacts, command vector, environment, expected outputs

(as well as execution properties, timeout-related information, . . .)
• mathematical function intensional equality on artifacts

8 HUAWEI TECHNOLOGIES DUESSELDORF GMBH, Munich Research Center

Build System Multi Repo Rules Rebuilding Non-Build Get it!

Equality: Intensional versus Extensional

$ cat TARGETS , "cmds": ["cat out.txt | tr a-z A-Z > upper.txt"]
{ "foo": }
{ "type": "generic" , "ALL":
, "outs": ["out.txt"] { "type": "install"
, "cmds": ["echo Hello World > out.txt"] , "files":
} {"foo.txt": "foo upper", "bar.txt": "bar upper", "baz.txt": "baz upper"}

, "bar": }
{ "type": "generic" }
, "outs": ["out.txt"] $
, "cmds": ["echo Hello World > out.txt"]
}

, "baz":
{ "type": "generic"
, "outs": ["out.txt"]
, "cmds": ["echo -n Hello > out.txt && echo ' World' >> out.txt"]
}

, "foo upper":
{ "type": "generic"
, "deps": ["foo"]
, "outs": ["upper.txt"]
, "cmds": ["cat out.txt | tr a-z A-Z > upper.txt"]
}

, "bar upper":
{ "type": "generic"
, "deps": ["bar"]
, "outs": ["upper.txt"]
, "cmds": ["cat out.txt | tr a-z A-Z > upper.txt"]
}

, "baz upper":
{ "type": "generic"
, "deps": ["baz"]
, "outs": ["upper.txt"]

9 HUAWEI TECHNOLOGIES DUESSELDORF GMBH, Munich Research Center

Build System Multi Repo Rules Rebuilding Non-Build Get it!

Equality: Intensional versus Extensional

$ cat TARGETS && just build -J 1 , "cmds": ["cat out.txt | tr a-z A-Z > upper.txt"]
{ "foo": }
{ "type": "generic" , "ALL":
, "outs": ["out.txt"] { "type": "install"
, "cmds": ["echo Hello World > out.txt"] , "files":
} {"foo.txt": "foo upper", "bar.txt": "bar upper", "baz.txt": "baz upper"}

, "bar": }
{ "type": "generic" }
, "outs": ["out.txt"] INFO: Requested target is [["@","","","ALL"],{}]
, "cmds": ["echo Hello World > out.txt"] INFO: Analysed target [["@","","","ALL"],{}]
} INFO: Discovered 4 actions, 0 trees, 0 blobs

, "baz": INFO: Building [["@","","","ALL"],{}].
{ "type": "generic" INFO: Processed 4 actions, 1 cache hits.
, "outs": ["out.txt"] INFO: Artifacts built, logical paths are:
, "cmds": ["echo -n Hello > out.txt && echo ' World' >> out.txt"] bar.txt [4e3dffe834ac70600a7cb71fbc1f6a694c9d041f:12:f]
} baz.txt [4e3dffe834ac70600a7cb71fbc1f6a694c9d041f:12:f]

, "foo upper": foo.txt [4e3dffe834ac70600a7cb71fbc1f6a694c9d041f:12:f]
{ "type": "generic" $
, "deps": ["foo"]
, "outs": ["upper.txt"]
, "cmds": ["cat out.txt | tr a-z A-Z > upper.txt"]
}

, "bar upper":
{ "type": "generic"
, "deps": ["bar"]
, "outs": ["upper.txt"]
, "cmds": ["cat out.txt | tr a-z A-Z > upper.txt"]
}

, "baz upper":
{ "type": "generic"
, "deps": ["baz"]
, "outs": ["upper.txt"]

9 HUAWEI TECHNOLOGIES DUESSELDORF GMBH, Munich Research Center

Build System Multi Repo Rules Rebuilding Non-Build Get it!

Reproducible Builds

• We consider build actions as functions—should also behave as such!
 Reproducible builds (see also https://reproducible-builds.org/)

• Why
• Independent verification possible that the binaries were built from those sources
• Reconstruct the precise binary you used at a particular point in time
• Also: more cache hits (if actions fall out of cache; formatting, comments, . . .)

• How
• Don’t include time stamps (other than SOURCE DATE EPOCH), working directory,

hostname, user name, . . .
• Don’t rely on readdir order, non-specified behaviour, race conditions, . . .
• Fix your enviroment: dependencies, tool chains, . . .—or bootstrap them!

• Also verify: just rebuild

10 HUAWEI TECHNOLOGIES DUESSELDORF GMBH, Munich Research Center

https://reproducible-builds.org/

Build System Multi Repo Rules Rebuilding Non-Build Get it!

Rebuilding

$ cat TARGETS
{ "":
{ "type": ["@", "rules", "CC", "binary"]
, "name": ["hello"]
, "srcs": ["main.cpp", "version.cpp", "greet.cpp"]
, "private-hdrs": ["version.hpp", "greet.hpp"]
}

}
$

11 HUAWEI TECHNOLOGIES DUESSELDORF GMBH, Munich Research Center

Build System Multi Repo Rules Rebuilding Non-Build Get it!

Rebuilding

$ cat TARGETS
{ "":
{ "type": ["@", "rules", "CC", "binary"]
, "name": ["hello"]
, "srcs": ["main.cpp", "version.cpp", "greet.cpp"]
, "private-hdrs": ["version.hpp", "greet.hpp"]
}

}
$

$ just-mr build
INFO: Performing repositories setup
INFO: Found 2 repositories to set up
INFO: Setup finished, exec ["just","build","-C","/worker/build/62bec0ed32723571/root/home/.cache/just/protocol-dependent/generation-0/git-sha1/casf/cd/e7ff54cc85bad8b8f5b1fedc42d1c03e884b02"]
INFO: Requested target is [["@","","",""],{}]
INFO: Analysed target [["@","","",""],{}]
INFO: Discovered 4 actions, 1 trees, 0 blobs
INFO: Building [["@","","",""],{}].
INFO: Processed 4 actions, 0 cache hits.
INFO: Artifacts built, logical paths are:

hello [2f47037aef458e6a8cc131b865ec795041922e0e:17616:x]
$

11 HUAWEI TECHNOLOGIES DUESSELDORF GMBH, Munich Research Center

Build System Multi Repo Rules Rebuilding Non-Build Get it!

Rebuilding

$ just-mr build
INFO: Performing repositories setup
INFO: Found 2 repositories to set up
INFO: Setup finished, exec ["just","build","-C","/worker/build/62bec0ed32723571/root/home/.cache/just/protocol-dependent/generation-0/git-sha1/casf/cd/e7ff54cc85bad8b8f5b1fedc42d1c03e884b02"]
INFO: Requested target is [["@","","",""],{}]
INFO: Analysed target [["@","","",""],{}]
INFO: Discovered 4 actions, 1 trees, 0 blobs
INFO: Building [["@","","",""],{}].
INFO: Processed 4 actions, 0 cache hits.
INFO: Artifacts built, logical paths are:

hello [2f47037aef458e6a8cc131b865ec795041922e0e:17616:x]
$

11 HUAWEI TECHNOLOGIES DUESSELDORF GMBH, Munich Research Center

Build System Multi Repo Rules Rebuilding Non-Build Get it!

Rebuilding

$ just-mr build
INFO: Performing repositories setup
INFO: Found 2 repositories to set up
INFO: Setup finished, exec ["just","build","-C","/worker/build/62bec0ed32723571/root/home/.cache/just/protocol-dependent/generation-0/git-sha1/casf/cd/e7ff54cc85bad8b8f5b1fedc42d1c03e884b02"]
INFO: Requested target is [["@","","",""],{}]
INFO: Analysed target [["@","","",""],{}]
INFO: Discovered 4 actions, 1 trees, 0 blobs
INFO: Building [["@","","",""],{}].
INFO: Processed 4 actions, 0 cache hits.
INFO: Artifacts built, logical paths are:

hello [2f47037aef458e6a8cc131b865ec795041922e0e:17616:x]
$

$ just-mr rebuild
INFO: Performing repositories setup
INFO: Found 2 repositories to set up
INFO: Setup finished, exec ["just","rebuild","-C","/worker/build/62bec0ed32723571/root/home/.cache/just/protocol-dependent/generation-0/git-sha1/casf/cd/e7ff54cc85bad8b8f5b1fedc42d1c03e884b02"]
INFO: Requested target is [["@","","",""],{}]
INFO: Analysed target [["@","","",""],{}]
INFO: Discovered 4 actions, 1 trees, 0 blobs
INFO: Rebuilding [["@","","",""],{}].
INFO: 4 actions compared with cache.
INFO: Artifacts built, logical paths are:

hello [2f47037aef458e6a8cc131b865ec795041922e0e:17616:x]
$

11 HUAWEI TECHNOLOGIES DUESSELDORF GMBH, Munich Research Center

Build System Multi Repo Rules Rebuilding Non-Build Get it!

Rebuilding

$ just-mr build
INFO: Performing repositories setup
INFO: Found 2 repositories to set up
INFO: Setup finished, exec ["just","build","-C","/worker/build/62bec0ed32723571/root/home/.cache/just/protocol-dependent/generation-0/git-sha1/casf/cd/e7ff54cc85bad8b8f5b1fedc42d1c03e884b02"]
INFO: Requested target is [["@","","",""],{}]
INFO: Analysed target [["@","","",""],{}]
INFO: Discovered 4 actions, 1 trees, 0 blobs
INFO: Building [["@","","",""],{}].
INFO: Processed 4 actions, 0 cache hits.
INFO: Artifacts built, logical paths are:

hello [2f47037aef458e6a8cc131b865ec795041922e0e:17616:x]
$

$ just-mr rebuild -L '["env", "--", "FAKETIME=1970-01-01 00:00:00", "LD_PRELOAD='$PREFIX'/lib/libfaketime.so.1"]'
INFO: Performing repositories setup
INFO: Found 2 repositories to set up
INFO: Setup finished, exec ["just","rebuild","-C","/worker/build/62bec0ed32723571/root/home/.cache/just/protocol-dependent/generation-0/git-sha1/casf/cd/e7ff54cc85bad8b8f5b1fedc42d1c03e884b02","-L","[\"env\", \"--\", \"FAKETIME=1970-01-01 00:00:00\", \"LD_PRELOAD=/worker/build/62bec0ed32723571/root/work/lib/libfaketime.so.1\"]"]
INFO: Requested target is [["@","","",""],{}]
INFO: Analysed target [["@","","",""],{}]
INFO: Discovered 4 actions, 1 trees, 0 blobs
INFO: Rebuilding [["@","","",""],{}].
WARN: Found flaky action:

- id: afad430115d04a713e0de06770ca63e43f2f8dfe
- cmd: ["c++","-I","work","-isystem","include","-c","work/version.cpp","-o","work/version.o"]
- output 'work/version.o' differs:
- [b951c2204c8e9a083d869817493acb28dc10cb0d:2792:f] (rebuilt)
- [55f0079885057b199446bceb6b82fe0fe7f21def:2792:f] (cached)

INFO: 3 actions compared with cache, 1 flaky actions found (0 of which tainted), no cache entry found for 1 actions.
INFO: Artifacts built, logical paths are:

hello [4095831467e82db7f2980b620deecf8f44dcc813:17616:x]
$

11 HUAWEI TECHNOLOGIES DUESSELDORF GMBH, Munich Research Center

Build System Multi Repo Rules Rebuilding Non-Build Get it!

Rebuilding

$ just-mr build
INFO: Performing repositories setup
INFO: Found 2 repositories to set up
INFO: Setup finished, exec ["just","build","-C","/worker/build/62bec0ed32723571/root/home/.cache/just/protocol-dependent/generation-0/git-sha1/casf/cd/e7ff54cc85bad8b8f5b1fedc42d1c03e884b02"]
INFO: Requested target is [["@","","",""],{}]
INFO: Analysed target [["@","","",""],{}]
INFO: Discovered 4 actions, 1 trees, 0 blobs
INFO: Building [["@","","",""],{}].
INFO: Processed 4 actions, 0 cache hits.
INFO: Artifacts built, logical paths are:

hello [2f47037aef458e6a8cc131b865ec795041922e0e:17616:x]
$

$ just-mr rebuild -L '["env", "--", "FAKETIME=1970-01-01 00:00:00", "LD_PRELOAD='$PREFIX'/lib/libfaketime.so.1"]' --dump-flaky flaky.json
INFO: Performing repositories setup
INFO: Found 2 repositories to set up
INFO: Setup finished, exec ["just","rebuild","-C","/worker/build/62bec0ed32723571/root/home/.cache/just/protocol-dependent/generation-0/git-sha1/casf/cd/e7ff54cc85bad8b8f5b1fedc42d1c03e884b02","-L","[\"env\", \"--\", \"FAKETIME=1970-01-01 00:00:00\", \"LD_PRELOAD=/worker/build/62bec0ed32723571/root/work/lib/libfaketime.so.1\"]","--dump-flaky","flaky.json"]
INFO: Requested target is [["@","","",""],{}]
INFO: Analysed target [["@","","",""],{}]
INFO: Discovered 4 actions, 1 trees, 0 blobs
INFO: Rebuilding [["@","","",""],{}].
WARN: Found flaky action:

- id: afad430115d04a713e0de06770ca63e43f2f8dfe
- cmd: ["c++","-I","work","-isystem","include","-c","work/version.cpp","-o","work/version.o"]
- output 'work/version.o' differs:
- [b951c2204c8e9a083d869817493acb28dc10cb0d:2792:f] (rebuilt)
- [55f0079885057b199446bceb6b82fe0fe7f21def:2792:f] (cached)

INFO: 3 actions compared with cache, 1 flaky actions found (0 of which tainted), no cache entry found for 1 actions.
INFO: Artifacts built, logical paths are:

hello [4095831467e82db7f2980b620deecf8f44dcc813:17616:x]
$

11 HUAWEI TECHNOLOGIES DUESSELDORF GMBH, Munich Research Center

Build System Multi Repo Rules Rebuilding Non-Build Get it!

Rebuilding (cont’d)

$ cat flaky.json
{
"cache misses": [
"f94e0c38ca48c0ae590b81db7075537f8e480d69"

],
"flaky actions": {
"afad430115d04a713e0de06770ca63e43f2f8dfe": {
"work/version.o": {
"cached": {

"file_type": "f",
"id": "55f0079885057b199446bceb6b82fe0fe7f21def",
"size": 2792

},
"rebuilt": {

"file_type": "f",
"id": "b951c2204c8e9a083d869817493acb28dc10cb0d",
"size": 2792

}
}

}
}

}$

12 HUAWEI TECHNOLOGIES DUESSELDORF GMBH, Munich Research Center

Build System Multi Repo Rules Rebuilding Non-Build Get it!

Rebuilding (cont’d)

$ cat flaky.json
{
"cache misses": [
"f94e0c38ca48c0ae590b81db7075537f8e480d69"

],
"flaky actions": {
"afad430115d04a713e0de06770ca63e43f2f8dfe": {
"work/version.o": {
"cached": {

"file_type": "f",
"id": "55f0079885057b199446bceb6b82fe0fe7f21def",
"size": 2792

},
"rebuilt": {

"file_type": "f",
"id": "b951c2204c8e9a083d869817493acb28dc10cb0d",
"size": 2792

}
}

}
}

}$

$ for b in `jq -rM '."flaky actions" | .[] | .[] | .[] | .id ' flaky.json`
do just install-cas $b | od -t x1 > blob-$b

done
diff -u blob*

--- blob-55f0079885057b199446bceb6b82fe0fe7f21def 2023-07-14 11:10:46.393008231 +0000
+++ blob-b951c2204c8e9a083d869817493acb28dc10cb0d 2023-07-14 11:10:46.425008450 +0000
@@ -17,8 +17,8 @@
0000400 89 c7 e8 00 00 00 00 48 89 d8 48 89 c7 e8 00 00
0000420 00 00 48 8b 85 68 fe ff ff 48 8b 5d f8 c9 c3 48
0000440 65 6c 6c 6f 20 57 6f 72 6c 64 20 31 2e 30 00 2c

-0000460 20 28 63 29 20 00 4a 75 6c 20 31 34 20 32 30 32
-0000500 33 00 20 45 78 61 6d 70 6c 65 2e 63 6f 6d 00 ff
+0000460 20 28 63 29 20 00 4a 61 6e 20 20 31 20 31 39 37
+0000500 30 00 20 45 78 61 6d 70 6c 65 2e 63 6f 6d 00 ff
0000520 ff 01 0e 1d 05 00 00 36 61 a9 01 00 c1 01 05 00
0000540 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0000560 00 47 43 43 3a 20 28 44 65 62 69 61 6e 20 31 32

$

12 HUAWEI TECHNOLOGIES DUESSELDORF GMBH, Munich Research Center

Build System Multi Repo Rules Rebuilding Non-Build Get it!

Rebuilding (cont’d)

$ cat flaky.json
{
"cache misses": [
"f94e0c38ca48c0ae590b81db7075537f8e480d69"

],
"flaky actions": {
"afad430115d04a713e0de06770ca63e43f2f8dfe": {
"work/version.o": {
"cached": {

"file_type": "f",
"id": "55f0079885057b199446bceb6b82fe0fe7f21def",
"size": 2792

},
"rebuilt": {

"file_type": "f",
"id": "b951c2204c8e9a083d869817493acb28dc10cb0d",
"size": 2792

}
}

}
}

}$

$ for b in `jq -rM '."flaky actions" | .[] | .[] | .[] | .id ' flaky.json`
do just install-cas $b | od -t x1 > blob-$b

done
diff -u blob*

--- blob-55f0079885057b199446bceb6b82fe0fe7f21def 2023-07-14 11:10:46.393008231 +0000
+++ blob-b951c2204c8e9a083d869817493acb28dc10cb0d 2023-07-14 11:10:46.425008450 +0000
@@ -17,8 +17,8 @@
0000400 89 c7 e8 00 00 00 00 48 89 d8 48 89 c7 e8 00 00
0000420 00 00 48 8b 85 68 fe ff ff 48 8b 5d f8 c9 c3 48
0000440 65 6c 6c 6f 20 57 6f 72 6c 64 20 31 2e 30 00 2c

-0000460 20 28 63 29 20 00 4a 75 6c 20 31 34 20 32 30 32
-0000500 33 00 20 45 78 61 6d 70 6c 65 2e 63 6f 6d 00 ff
+0000460 20 28 63 29 20 00 4a 61 6e 20 20 31 20 31 39 37
+0000500 30 00 20 45 78 61 6d 70 6c 65 2e 63 6f 6d 00 ff
0000520 ff 01 0e 1d 05 00 00 36 61 a9 01 00 c1 01 05 00
0000540 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0000560 00 47 43 43 3a 20 28 44 65 62 69 61 6e 20 31 32

$

$ cat version.cpp
#include "version.hpp"

#include <sstream>

auto version() -> std::string {
std::ostringstream vstr{};
vstr << "Hello World 1.0";
vstr << ", (c) " << &__DATE__[7] << " Example.com";
return vstr.str();

}
$

12 HUAWEI TECHNOLOGIES DUESSELDORF GMBH, Munich Research Center

Build System Multi Repo Rules Rebuilding Non-Build Get it!

Non-Build Actions
• Not everything we build are pure functions, e.g., tests
• Still similar: we build the test report
• However, we expect tests to fail

. . .but still want the test log and run the other tests don’t abort the build
• . . . even for spurious reasons don’t cache failures
• Optionally want to check for flakyness support non inspecting the cache
 Allow actions to declare

• "may fail": continue on failure, mark as failed, don’t cache
• "no cache": run unconditionally without inspecting the cache

but mark those special actions as “tainted”, as well as everything depending

13 HUAWEI TECHNOLOGIES DUESSELDORF GMBH, Munich Research Center

Build System Multi Repo Rules Rebuilding Non-Build Get it!

Sources
• https://github.com/just-buildsystem/justbuild

• https://gitee.com/justbuild/justbuild

• License: Apache 2.0

14 HUAWEI TECHNOLOGIES DUESSELDORF GMBH, Munich Research Center

https://github.com/just-buildsystem/justbuild
https://gitee.com/justbuild/justbuild

	Build System
	Introduction
	just example
	Remote Execution

	Multi Repo
	Introduction
	Getting Started

	Rules
	Rules

	Rebuilding
	Rebuilding

	Non-Build
	Non-Build Actions

	Get it!
	Sources

