Introduction
o

Ignore Explore Declare Repository Graph Equality
o 000 oo 000 000

Project Dependencies and Structuring the Build

Klaus Aehlig

Oct 13, 2025

Summary
o

Introduction Ignore Explore Declare Repository Graph Equality
L]

o] [e]e]e} [e]e] [e]e]e} [e]e]e}

Intro

® | have some experience with software build ...

® | use software build tools since 1998 and package-build tools since 2007
® | work on build tools since 2016
® SWE in the bazel team 2016-2020
® Leading development of a new build tool from scratch 2020-2025
open-sourced as https://github.com/just-buildsystem/justbuild
(not to be confused with other build tools with the same name)

~¢

Summary
o

https://github.com/just-buildsystem/justbuild

Introduction
°

Intro

® | have some experience with software build ...

® | use software build tools since 1998 and package-build tools since 2007
® | work on build tools since 2016
® SWE in the bazel team 2016-2020
® Leading development of a new build tool from scratch 2020-2025
open-sourced as https://github.com/just-buildsystem/justbuild
(not to be confused with other build tools with the same name)

~¢

and observed one (of several) re-occurring themes
For every non-trivial software project you need libraries, tools (compilers, code
generators, linters ...), and/or frameworks for wich you are not upstream.

In fact, those dependencies are moving faster and faster.

https://github.com/just-buildsystem/justbuild

Introduction
°

Intro

® | have some experience with software build ...

® | use software build tools since 1998 and package-build tools since 2007
® | work on build tools since 2016
® SWE in the bazel team 2016-2020
® Leading development of a new build tool from scratch 2020-2025
open-sourced as https://github.com/just-buildsystem/justbuild
(not to be confused with other build tools with the same name)

~¢

and observed one (of several) re-occurring themes
For every non-trivial software project you need libraries, tools (compilers, code
generators, linters ...), and/or frameworks for wich you are not upstream.

In fact, those dependencies are moving faster and faster.

® Let's look at (some of the) approaches to deal with this situation
(from the perspective of a build tool)

https://github.com/just-buildsystem/justbuild

Introduction Ignore Explore Declare Repository Graph Equality Summary
o] L] [e]e]e} [e]e] [e]e]e} [e]e]e} o]

lgnore

The most simple approach (for the build tool) is to ignore the problem.

Ignore
.

lgnore

The most simple approach (for the build tool) is to ignore the problem.
® Just take it from host/PATH/. ..
® Gets you into the “Works on my machine” problem

Ignore
.

lgnore

The most simple approach (for the build tool) is to ignore the problem.

® Just take it from host/PATH/. ..
® Gets you into the “Works on my machine” problem
® However, this is the standard interface for package building
(where the tool sets up the “host environment” in a well-defined way)
~ every OSS project has to support this mode of building
... just not as the default for delopment!

Ignore
.

lgnore

The most simple approach (for the build tool) is to ignore the problem.

® Just take it from host/PATH/. ..
® Gets you into the “Works on my machine” problem
® However, this is the standard interface for package building
(where the tool sets up the “host environment” in a well-defined way)
~ every OSS project has to support this mode of building
... just not as the default for delopment!

® Just use a mono-repo
® Copy in source code (git subtree if you're fancy)
® write build description (“only until everyone uses our build system ...")
~~ later rules for foreign build systems supported
® Set up a team to maintain that (de-facto) fork
Task: separate between upstream code and custom patches

Introduction Ignore Explore Declare Repository Graph Equality Summary
o] o] @00 [e]e] [e]e]e} [e]e]e} o]

Explore (Bazel ~2018)

® |terpret WORKSPACE as a starlark file

® |mperative language, so latest assignment/definition wins
® At load statements need to acces dependencies, so freeze there

Explore
®00

Explore (Bazel ~2018)
® |terpret WORKSPACE as a starlark file

® Imperative language, so latest assignment/definition wins
® At load statements need to acces dependencies, so freeze there
® Transitive dependencies handled via the deps-pattern

1oad("@bazel_tools//tools/build_defs/repo:http.bzl", "http_archive")
http_archive(

name = "com_example_foo",
urls = ["https://example.com/foo/foo-1.2.3.tar.gz"],
strip_prefix = "f00-1.2.3

sha256 = "0a6717e765818538f153ac27cabef97ca
)

374017e1dc2b:

6bfsc!,
1oad("@con_example_foo//:deps.bzl", "foo_deps")
foo_deps ()

with implementation

1oad("@bazel_tools//tools/build_defs/repo:http.bzl", "http_archive")
def foo_deps():

if "com_example_bar" not in native.existing_rules():
http_archive (name="con_example_bar",

Depth-first traversal, with each project only declaring its direct dependencies

Introduction
o]

Ignore Explore Declare Repository Graph
oeo [e]e] [e]e]e}

Explore (Bazel ~2018), cont'd

® Could generate a transcript with resolved arguments and hash of repo tree

resolved = [

{

"original_rule_class": "@bazel_tools//tools/build_defs/repo:git.bzl%git_repository",
"original attributes": {
"name": "com_google_protobuf",
"remote": "https://github.com/google/protobuf",
"branch": "master"
}
"repositories”: [
"rule_class": "Gbazel tools//tools/build_defs/repo:git.bzllgit_repository",
"output_tree_hash": "a776ce4f591! Tb86a0edf c76£cEdA96" ,
"attributes": {
"remote": "https://github.com/google/protobuf",
"commit": "aelcc7e328c45a0cb9856c530c8£6cd23314163"
"shallow_since": "2018-09-17",
"init_submodules": False,
"verbose": False,
"strip_prefix": "",
"patches”: [1,
"patch_tool": "patch",
"patch_args": [
"-pon
1,
"patch_cmds": [],
"name": "com_google_protobuf"
}
b3
]
b

]

Could use that instead of the WORKSPACE file

Equality
[e]e]e}

Summary

Explore
ococe

Explore (Bazel ~2018), summary

Imperatively discover dependencies in a depth-first way

Clear operational semantics (freeze at load statements), but still caused confusion
~> maybe operational semantics is not the right approach?

Arguments resolved (e.g., branch to commit) to generate a lock file,

hashes to verify

Used in a global, unstructured, collection of repositories
~> agreement on naming?

Introduction Ignore Explore Declare Repository Graph
o] o] [e]e]e} [Je} [e]e]e}

Declare (Bazel ~2024)

e Still only care about direct dependencies, but only declare
(no more manual coding of depth-first search)

module(
name = "fmt",
version = "11.2.0",
bazel_compatibility = [">=7.2.1"],
compatibility_level = 10,

)

bazel_dep(name = "rules_cc", version = "0.1.1")
bazel_dep(name = "rules_license", version = "1.0.0")

Equality
000

Summary
0

Introduction Ignore Explore Declare ository Graph

[Je}

[e} o

Declare (Bazel ~2024)

e Still only care about direct dependencies, but only declare
(no more manual coding of depth-first search)

module(
name = " B
version = "11.2.0",
bazel_compatibility = [">=7.2.1"],
compatibility_level = 10,

)

bazel_dep(name = "rules_cc", version = "0.1.1")
bazel_dep(name = "rules_license", version = "1.0.0")

{
"integrity": "sha256-cS13hosxUtihjE1k+q3e/MIWX5D13m5t0dXdzQvoLUT=",
"strip_prefix": "rules_cc-0.1.1",
"url": "https://github.com/bazelbuild/rules_cc/releases/download/0.1.1/rules_cc-0.1.1.tar.gz",
"patches": {
"module_dot_bazel_version.patch": "sha256-2WyM/DEOM/Dj9MQUOJ179eQ0Ju3QHGsgIuL010TIndt4="
3,
"patch_strip": 1

® Resolved via (one or more) registries, that also contain the source description

Summary

Declare
oce

Declare (Bazel ~2024), cont'd

Global resolution of dependencies to one version per module

® solves the problem of linking different versions of a library

® opens the problem of building a library against a different version of its dependency
Modules use local names for their dependencies
(“apparent” vs “canoncial” repository name)

® Can have simple local names, no problems with naming conflicts
® Enforcing restriction to the declared dependencies

Lock files MODULE.bazel.lock with hashes

Target evaluation as if it were a mono-repo

Introduction Ignore Explore Declare
o] o]

Repository Graph Equality
000 oo ®00

[e]e]e}

Another Declarative Approach (Justbuild ~2022)

Meanwhile, at a different build system ...

® Repositories use local names, bound in a global repository configuration

{ "repositories":

{ "repository's {"type": "file", "path®: .}
, "bindings": {"rules": "rules-cc"}
» "rules-cc":

{ "repository":
£ reyper: "gith
“repository": "https://github.con/just-buildsysten/rules-cc.git"

, "branch": 'master"

, "commit 549d26c£8def0agb3a74790137b0b75b0a21b8"
, "subdir": "rules"

¥

Summary
o]

Introduction Ignore Explore Declare Repository Graph Equality Summary
o o 000 oo ®00 000 o

Another Declarative Approach (Justbuild ~2022)

Meanwhile, at a different build system ...
® Repositories use local names, bound in a global repository configuration

® Can be generated from declaration of direct inputs

{ "repositories":
{ "repositories”:
{ "repository": {"type": "file", "path": "."}
, "bindings": {"rules": "rules-cc"} { "repository": {"type": "file", "path": "."}
, "bindings": {"rules": "rules-cc'}
, "rules-cc": b
{ "repository": 3
{ "type": "git" , "imports":
s : "https://github.com/just-buildsysten/rules-cc.git" [{ "sour:
B aster" , "url" ://github.com/just-buildsystem/rules-cc.git"
, : "2£549d26cf8def0a9b3a74790137b0b75b0a21b8" , "branch": "master"
, "subdir": "rules" , "repos": [{"repo": "rules", "alias": "rules-cc"}]
¥
}]
b3 ¥
¥

® |ibraries are built precisely against the declared version of their dependencies
® opens the problem of linking different version so the same library

~ slightly different design choices for dependency import, but also declarative

Introduction Ignore Explore Declare Repository Graph Equality Summary
o o 00 oo ®00 000 o

Another Declarative Approach (Justbuild ~2022)

Meanwhile, at a different build system ...
® Repositories use local names, bound in a global repository configuration

® Can be generated from declaration of direct inputs

{ "repositories"

: { "repositories”:
{ "repository": {"type": "file", "path": "."}

, "bindings": {"rules": "rules-cc"} { "repository": {"type": "file", "path": "."}
, "bindings": {"rules": "rules-cc"}
, "rules-cc": b
{ "repository": 3
{ "type": "git" , "imports":
: "https://github.con/just-buildsystem/rules-cc.git" [{ "sour
aster" , "url" ://github.com/just-buildsystem/rules-cc.git"

: "2£549d26cf8def0a9b3a74790137b0b75b0a21b8" , "branch": ster"
"subdir": "rules" , "repos": [{"repo": "rules", "alias": "rules-cc"}]

¥]
b3 ¥

® |ibraries are built precisely against the declared version of their dependencies
® opens the problem of linking different version so the same library

~ slightly different design choices for dependency import, but also declarative

e Separation of dependency import, fetch, and build (even different tools)

Introduction Ignore Explore Declare Repository Graph Equality Summary
o] o] [e]e]e} oeo [e]e]e} o]

Using Repository Stucture in Evaluation (Justbuild ~2022)
Evaluation, however, uses the repository structure . ..
® Have a graph of repositories, know the transitive dependencies
® Repositories often have pinned content (given by commit hash, archive hash, ...)

~> If nothing have changed, can take target value from cache

Repository Graph
oceo

Using Repository Stucture in Evaluation (Justbuild ~2022)
Evaluation, however, uses the repository structure . ..

® Have a graph of repositories, know the transitive dependencies

® Repositories often have pinned content (given by commit hash, archive hash, ...

~> If nothing have changed, can take target value from cache
® We even have this as a service and avoid fetching dependencies
® Repository content queries (commit hash, archive hash, ... — tree hash)
® Target queries (repo graph (hash), configuration, target),
answer hash, artifacts directly pushed to remote execution
(built on the fly, if not cached already)

Repository Graph
oceo

Using Repository Stucture in Evaluation (Justbuild ~2022)
Evaluation, however, uses the repository structure . ..

® Have a graph of repositories, know the transitive dependencies

® Repositories often have pinned content (given by commit hash, archive hash, ...

~> If nothing have changed, can take target value from cache
® We even have this as a service and avoid fetching dependencies

® Repository content queries (commit hash, archive hash, ... — tree hash)
® Target queries (repo graph (hash), configuration, target),

answer hash, artifacts directly pushed to remote execution

(built on the fly, if not cached already)

® Especially useful when bootstrapping
(instead of more and more build images have one with /bin/sh and tcc,
and build tools from there)

Repository Graph
oceo

Using Repository Stucture in Evaluation (Justbuild ~2022)

Evaluation, however, uses the repository structure . ..

S

Have a graph of repositories, know the transitive dependencies

Repositories often have pinned content (given by commit hash, archive hash, ...

If nothing have changed, can take target value from cache
We even have this as a service and avoid fetching dependencies
® Repository content queries (commit hash, archive hash, ... — tree hash)
® Target queries (repo graph (hash), configuration, target),
answer hash, artifacts directly pushed to remote execution
(built on the fly, if not cached already)
Especially useful when bootstrapping
(instead of more and more build images have one with /bin/sh and tcc,
and build tools from there)

Logical repositories can reside in the same git repository!
~~ organize the project structure (think “reverse visibility")

Introduction Ignore Explore Declare Repository Graph Equality Summary
o o 000 oo ocoe 000 o

Logical Repositories in a Monorepo

® Even in a monorepo, there is an internal structure

e differnt projects/teams
® often formalized: code ownership, approval requirements, ...

® The dependency structure between those subprojects changes rarely
(therefore, litte effort to maintain explicit description thereof)

compilers, tool chains

base libraries

frameworks

[)
[)
[]
® applications

Introduction
o

Explore Declare

Ignore
o ooo oo

Repository Graph

Equality Summary
000 ®00 o

Justbuild Target Value Example

$ just-mr analyse libbar

INFO:
INFI
INFI
INFO
INFO:
INFO:
INFO:

Performing repositories setup
Found 2 repositories involved

: Setup finished, exec ["just","analyse","-C","/example/.home/.cache/..
: Requested target is [["@"

", "libbar"],{}]

Analysed target [["@","","","libbar"],{}]

Export targets found: 1 cached, O uncached, 0 not eligible for caching

Result of target [["@","","","libbar"],{}]: {

"artifacts": {

"libbar.a": {"data":{"file_type
1,
"provides": {

"compile-args": [

1,

"compile-deps": {

£, nign

"foo.hpp": {"data":{"file_type":"f","id":"c2f3fff7{446£92f2a. ..

},
"debug-hdrs": {
"debug-srcs": {
},
"dwarf-pkg": {
},
"link-args": [
"libbar.a",

'd4b3d0780802611407dc. . .

"libfoo.a"
1,
"link-deps

"libfoo.a

: {"data":{"file_type":"f","id": "e8d8b9899fbf552ef2. . .
},
"lint": [
1,
"package": {
"cflags-files": {},
"ldflags-files": {},
"name": "bar"
},
"run-libs": {
3,
"run-libs-args": [
]
3,
"runfiles": {
"bar.hpp": {"data":{"file_type"

,"id":"2bd3ee3212fd330137391. . .

Introduction Ignore Explore Declare Repository Graph Equality Summary
o] o] [e]e]e} (e]e) [e] e} o]

Using Repository Stucture in Evaluation (Justbuild ~2022), Prerequisites

e Concept of what a target looks like to others (indendent of its origin!)
® artifacts (e.g., libbar.a)
® dev-artifacts (e. g., bar.hpp)
® additional usage information
® link order
® transitive artifacts needed for building, linking, ...
® abstract graph nodes for reflection (e. g., proto library)
[]

~ Notion of equality (Targets coinciding in this data must be indistinguishable)

Equality
oceo

Using Repository Stucture in Evaluation (Justbuild ~2022), Prerequisites

e Concept of what a target looks like to others (indendent of its origin!)
® artifacts (e.g., libbar.a)
® dev-artifacts (e. g., bar.hpp)
® additional usage information
® link order
® transitive artifacts needed for building, linking, ...
® abstract graph nodes for reflection (e. g., proto library)
[]

~ Notion of equality (Targets coinciding in this data must be indistinguishable)
® Target must only depend on its repo and the transitive dependencies thereof
~> Notion of equality for repos

® no comparison on target-references
® would have to include global name if we did Bazel-style path mangling

Equality
ooce

Output paths

® Many build systems (including Bazel, ...) do path mangling
® Command-line interpolation with $ (location ...)
® Leaking canonical repository name ~~ different actions if main/dep repo
® Full branching on config transtions, even if only tiny part really depends

Equality
ooce

Output paths

® Many build systems (including Bazel, ...) do path mangling
® Command-line interpolation with $ (location ...)
® Leaking canonical repository name ~~ different actions if main/dep repo
® Full branching on config transtions, even if only tiny part really depends
e Why? To get unique outputpath (relative to the build root)
® overlapping outputs check, confinement of outputs to package

Equality
ooce

Output paths

® Many build systems (including Bazel, ...) do path mangling

® Command-line interpolation with $ (location ...)
® Leaking canonical repository name ~~ different actions if main/dep repo
® Full branching on config transtions, even if only tiny part really depends

e Why? To get unique outputpath (relative to the build root)
® overlapping outputs check, confinement of outputs to package

® Why? Becaues build is seen as imperative: Want a side-effect on the file system!
® Synchronisation of processes; no two builds with same output root simultaneously

Equality
ooce

Output paths

Many build systems (including Bazel, ...) do path mangling

® Command-line interpolation with $ (location ...)
® Leaking canonical repository name ~~ different actions if main/dep repo
® Full branching on config transtions, even if only tiny part really depends

Why? To get unique outputpath (relative to the build root)
® overlapping outputs check, confinement of outputs to package
Why? Becaues build is seen as imperative: Want a side-effect on the file system!
® Synchronisation of processes; no two builds with same output root simultaneously
However our main model of computation, remote execution, is functional

® Cachable input/output relation
® actions independent, inputs can be placed anywhere in the logical space

Equality
ooce

Output paths

Many build systems (including Bazel, ...) do path mangling
® Command-line interpolation with $(location ...)
® Leaking canonical repository name ~~ different actions if main/dep repo
® Full branching on config transtions, even if only tiny part really depends

Why? To get unique outputpath (relative to the build root)
® overlapping outputs check, confinement of outputs to package
Why? Becaues build is seen as imperative: Want a side-effect on the file system!
® Synchronisation of processes; no two builds with same output root simultaneously
However our main model of computation, remote execution, is functional
® Cachable input/output relation
® actions independent, inputs can be placed anywhere in the logical space
Easy to make local builds model remote execution:
fresh action directory, hard-link in, action, hard-link out; artifacts in CAS

Equality
ooce

Output paths

Many build systems (including Bazel, ...) do path mangling

® Command-line interpolation with $ (location ...)
® Leaking canonical repository name ~~ different actions if main/dep repo
® Full branching on config transtions, even if only tiny part really depends

Why? To get unique outputpath (relative to the build root)
® overlapping outputs check, confinement of outputs to package
Why? Becaues build is seen as imperative: Want a side-effect on the file system!
® Synchronisation of processes; no two builds with same output root simultaneously
However our main model of computation, remote execution, is functional
® Cachable input/output relation
® actions independent, inputs can be placed anywhere in the logical space
Easy to make local builds model remote execution:
fresh action directory, hard-link in, action, hard-link out; artifacts in CAS
Break with make and use functional approach?! (e.g., justbuild)
~~ compute result, ask for specific output (or tell where to install)

Summary

External dependency handling: went from operational to denotational semantics
Splitting in (logical) repos can document code structure
This additional structure can be used to keep target and action graph small

This works best, when using a more functional understanding of build
~> time to fully break compatibility with make?

Summary
°

	Introduction
	Introduction

	Ignore
	Ignore

	Explore
	Explore

	Declare
	Declare

	Repository Graph
	Repository Graph

	Equality
	Equality

	Summary
	Summary

