
Introduction Ignore Explore Declare Repository Graph Equality Summary

Project Dependencies and Structuring the Build

Klaus Aehlig

Oct 13, 2025

Introduction Ignore Explore Declare Repository Graph Equality Summary

Intro

• I have some experience with software build . . .
• I use software build tools since 1998 and package-build tools since 2007
• I work on build tools since 2016

• SWE in the bazel team 2016–2020
• Leading development of a new build tool from scratch 2020–2025

open-sourced as https://github.com/just-buildsystem/justbuild
(not to be confused with other build tools with the same name)

. . . and observed one (of several) re-occurring themes

For every non-trivial software project you need libraries, tools (compilers, code
generators, linters . . .), and/or frameworks for wich you are not upstream.

In fact, those dependencies are moving faster and faster.

• Let’s look at (some of the) approaches to deal with this situation
(from the perspective of a build tool)

https://github.com/just-buildsystem/justbuild

Introduction Ignore Explore Declare Repository Graph Equality Summary

Intro

• I have some experience with software build . . .
• I use software build tools since 1998 and package-build tools since 2007
• I work on build tools since 2016

• SWE in the bazel team 2016–2020
• Leading development of a new build tool from scratch 2020–2025

open-sourced as https://github.com/just-buildsystem/justbuild
(not to be confused with other build tools with the same name)

. . . and observed one (of several) re-occurring themes

For every non-trivial software project you need libraries, tools (compilers, code
generators, linters . . .), and/or frameworks for wich you are not upstream.

In fact, those dependencies are moving faster and faster.

• Let’s look at (some of the) approaches to deal with this situation
(from the perspective of a build tool)

https://github.com/just-buildsystem/justbuild

Introduction Ignore Explore Declare Repository Graph Equality Summary

Intro

• I have some experience with software build . . .
• I use software build tools since 1998 and package-build tools since 2007
• I work on build tools since 2016

• SWE in the bazel team 2016–2020
• Leading development of a new build tool from scratch 2020–2025

open-sourced as https://github.com/just-buildsystem/justbuild
(not to be confused with other build tools with the same name)

. . . and observed one (of several) re-occurring themes

For every non-trivial software project you need libraries, tools (compilers, code
generators, linters . . .), and/or frameworks for wich you are not upstream.

In fact, those dependencies are moving faster and faster.

• Let’s look at (some of the) approaches to deal with this situation
(from the perspective of a build tool)

https://github.com/just-buildsystem/justbuild

Introduction Ignore Explore Declare Repository Graph Equality Summary

Ignore

The most simple approach (for the build tool) is to ignore the problem.

• Just take it from host/PATH/. . .
• Gets you into the “Works on my machine” problem

• However, this is the standard interface for package building
(where the tool sets up the “host environment” in a well-defined way)
⇝ every OSS project has to support this mode of building

. . . just not as the default for delopment!

• Just use a mono-repo
• Copy in source code (git subtree if you’re fancy)
• write build description (“only until everyone uses our build system . . . ”)
⇝ later rules for foreign build systems supported

• Set up a team to maintain that (de-facto) fork
Task: separate between upstream code and custom patches

Introduction Ignore Explore Declare Repository Graph Equality Summary

Ignore

The most simple approach (for the build tool) is to ignore the problem.
• Just take it from host/PATH/. . .

• Gets you into the “Works on my machine” problem

• However, this is the standard interface for package building
(where the tool sets up the “host environment” in a well-defined way)
⇝ every OSS project has to support this mode of building

. . . just not as the default for delopment!

• Just use a mono-repo
• Copy in source code (git subtree if you’re fancy)
• write build description (“only until everyone uses our build system . . . ”)
⇝ later rules for foreign build systems supported

• Set up a team to maintain that (de-facto) fork
Task: separate between upstream code and custom patches

Introduction Ignore Explore Declare Repository Graph Equality Summary

Ignore

The most simple approach (for the build tool) is to ignore the problem.
• Just take it from host/PATH/. . .

• Gets you into the “Works on my machine” problem
• However, this is the standard interface for package building

(where the tool sets up the “host environment” in a well-defined way)
⇝ every OSS project has to support this mode of building

. . . just not as the default for delopment!

• Just use a mono-repo
• Copy in source code (git subtree if you’re fancy)
• write build description (“only until everyone uses our build system . . . ”)
⇝ later rules for foreign build systems supported

• Set up a team to maintain that (de-facto) fork
Task: separate between upstream code and custom patches

Introduction Ignore Explore Declare Repository Graph Equality Summary

Ignore

The most simple approach (for the build tool) is to ignore the problem.
• Just take it from host/PATH/. . .

• Gets you into the “Works on my machine” problem
• However, this is the standard interface for package building

(where the tool sets up the “host environment” in a well-defined way)
⇝ every OSS project has to support this mode of building

. . . just not as the default for delopment!

• Just use a mono-repo
• Copy in source code (git subtree if you’re fancy)
• write build description (“only until everyone uses our build system . . . ”)
⇝ later rules for foreign build systems supported

• Set up a team to maintain that (de-facto) fork
Task: separate between upstream code and custom patches

Introduction Ignore Explore Declare Repository Graph Equality Summary

Explore (Bazel ≈2018)

• Iterpret WORKSPACE as a starlark file
• Imperative language, so latest assignment/definition wins
• At load statements need to acces dependencies, so freeze there

• Transitive dependencies handled via the deps-pattern
load("@bazel_tools//tools/build_defs/repo:http.bzl", "http_archive")

http_archive(

name = "com_example_foo",

urls = ["https://example.com/foo/foo-1.2.3.tar.gz"],

strip_prefix = "foo-1.2.3",

sha256 = "0a6717e765818538f153ac27ca6cf97c4290cb25dd374017e1dc2bd0d6f6bf5c",

)

load("@com_example_foo//:deps.bzl", "foo_deps")

foo_deps()

with implementation
load("@bazel_tools//tools/build_defs/repo:http.bzl", "http_archive")

def foo_deps():

if "com_example_bar" not in native.existing_rules():

http_archive(name="com_example_bar", ...)

...

⇝ Depth-first traversal, with each project only declaring its direct dependencies

Introduction Ignore Explore Declare Repository Graph Equality Summary

Explore (Bazel ≈2018)

• Iterpret WORKSPACE as a starlark file
• Imperative language, so latest assignment/definition wins
• At load statements need to acces dependencies, so freeze there

• Transitive dependencies handled via the deps-pattern
load("@bazel_tools//tools/build_defs/repo:http.bzl", "http_archive")

http_archive(

name = "com_example_foo",

urls = ["https://example.com/foo/foo-1.2.3.tar.gz"],

strip_prefix = "foo-1.2.3",

sha256 = "0a6717e765818538f153ac27ca6cf97c4290cb25dd374017e1dc2bd0d6f6bf5c",

)

load("@com_example_foo//:deps.bzl", "foo_deps")

foo_deps()

with implementation
load("@bazel_tools//tools/build_defs/repo:http.bzl", "http_archive")

def foo_deps():

if "com_example_bar" not in native.existing_rules():

http_archive(name="com_example_bar", ...)

...

⇝ Depth-first traversal, with each project only declaring its direct dependencies

Introduction Ignore Explore Declare Repository Graph Equality Summary

Explore (Bazel ≈2018), cont’d
• Could generate a transcript with resolved arguments and hash of repo tree

resolved = [

...

{

"original_rule_class": "@bazel_tools//tools/build_defs/repo:git.bzl%git_repository",

"original_attributes": {

"name": "com_google_protobuf",

"remote": "https://github.com/google/protobuf",

"branch": "master"

},

"repositories": [

{

"rule_class": "@bazel_tools//tools/build_defs/repo:git.bzl%git_repository",

"output_tree_hash": "a776ce4f591327c6b23d88d367d6208a88af6ad889e08f7b86a0edfc76fcfd96",

"attributes": {

"remote": "https://github.com/google/protobuf",

"commit": "a6e1cc7e328c45a0cb9856c530c8f6cd23314163",

"shallow_since": "2018-09-17",

"init_submodules": False,

"verbose": False,

"strip_prefix": "",

"patches": [],

"patch_tool": "patch",

"patch_args": [

"-p0"

],

"patch_cmds": [],

"name": "com_google_protobuf"

}

}

]

}

]

• Could use that instead of the WORKSPACE file

Introduction Ignore Explore Declare Repository Graph Equality Summary

Explore (Bazel ≈2018), summary

• Imperatively discover dependencies in a depth-first way

• Clear operational semantics (freeze at load statements), but still caused confusion
⇝ maybe operational semantics is not the right approach?

• Arguments resolved (e. g., branch to commit) to generate a lock file,
hashes to verify

• Used in a global, unstructured, collection of repositories
⇝ agreement on naming?

Introduction Ignore Explore Declare Repository Graph Equality Summary

Declare (Bazel ≈2024)

• Still only care about direct dependencies, but only declare
(no more manual coding of depth-first search)
module(

name = "fmt",

version = "11.2.0",

bazel_compatibility = [">=7.2.1"],

compatibility_level = 10,

)

bazel_dep(name = "rules_cc", version = "0.1.1")

bazel_dep(name = "rules_license", version = "1.0.0")

• Resolved via (one or more) registries, that also contain the source description
{

"integrity": "sha256-cS13hosxUt1hjE1k+q3e/MWWX5D13m5t0dXdzQvoLUI=",

"strip_prefix": "rules_cc-0.1.1",

"url": "https://github.com/bazelbuild/rules_cc/releases/download/0.1.1/rules_cc-0.1.1.tar.gz",

"patches": {

"module_dot_bazel_version.patch": "sha256-2WyM/DEOM/Dj9MQU0Jl79eQ0Ju3QHGsgIuLO1OIwdt4="

},

"patch_strip": 1

}

Introduction Ignore Explore Declare Repository Graph Equality Summary

Declare (Bazel ≈2024)

• Still only care about direct dependencies, but only declare
(no more manual coding of depth-first search)
module(

name = "fmt",

version = "11.2.0",

bazel_compatibility = [">=7.2.1"],

compatibility_level = 10,

)

bazel_dep(name = "rules_cc", version = "0.1.1")

bazel_dep(name = "rules_license", version = "1.0.0")

• Resolved via (one or more) registries, that also contain the source description
{

"integrity": "sha256-cS13hosxUt1hjE1k+q3e/MWWX5D13m5t0dXdzQvoLUI=",

"strip_prefix": "rules_cc-0.1.1",

"url": "https://github.com/bazelbuild/rules_cc/releases/download/0.1.1/rules_cc-0.1.1.tar.gz",

"patches": {

"module_dot_bazel_version.patch": "sha256-2WyM/DEOM/Dj9MQU0Jl79eQ0Ju3QHGsgIuLO1OIwdt4="

},

"patch_strip": 1

}

Introduction Ignore Explore Declare Repository Graph Equality Summary

Declare (Bazel ≈2024), cont’d

• Global resolution of dependencies to one version per module
• solves the problem of linking different versions of a library
• opens the problem of building a library against a different version of its dependency

• Modules use local names for their dependencies
(“apparent” vs “canoncial” repository name)

• Can have simple local names, no problems with naming conflicts
• Enforcing restriction to the declared dependencies

• Lock files MODULE.bazel.lock with hashes

• Target evaluation as if it were a mono-repo

Introduction Ignore Explore Declare Repository Graph Equality Summary

Another Declarative Approach (Justbuild ≈2022)

Meanwhile, at a different build system . . .

• Repositories use local names, bound in a global repository configuration

• Can be generated from declaration of direct inputs

{ "repositories":

{ "":

{ "repository": {"type": "file", "path": "."}

, "bindings": {"rules": "rules-cc"}

}

, "rules-cc":

{ "repository":

{ "type": "git"

, "repository": "https://github.com/just-buildsystem/rules-cc.git"

, "branch": "master"

, "commit": "2f549d26cf8def0a9b3a74790137b0b75b0a21b8"

, "subdir": "rules"

}

}

}

}

{ "repositories":

{ "":

{ "repository": {"type": "file", "path": "."}

, "bindings": {"rules": "rules-cc"}

}

}

, "imports":

[{ "source": "git"

, "url": "https://github.com/just-buildsystem/rules-cc.git"

, "branch": "master"

, "repos": [{"repo": "rules", "alias": "rules-cc"}]

}

]

}

• libraries are built precisely against the declared version of their dependencies
• opens the problem of linking different version so the same library

⇝ slightly different design choices for dependency import, but also declarative

• Separation of dependency import, fetch, and build (even different tools)

Introduction Ignore Explore Declare Repository Graph Equality Summary

Another Declarative Approach (Justbuild ≈2022)

Meanwhile, at a different build system . . .

• Repositories use local names, bound in a global repository configuration

• Can be generated from declaration of direct inputs
{ "repositories":

{ "":

{ "repository": {"type": "file", "path": "."}

, "bindings": {"rules": "rules-cc"}

}

, "rules-cc":

{ "repository":

{ "type": "git"

, "repository": "https://github.com/just-buildsystem/rules-cc.git"

, "branch": "master"

, "commit": "2f549d26cf8def0a9b3a74790137b0b75b0a21b8"

, "subdir": "rules"

}

}

}

}

{ "repositories":

{ "":

{ "repository": {"type": "file", "path": "."}

, "bindings": {"rules": "rules-cc"}

}

}

, "imports":

[{ "source": "git"

, "url": "https://github.com/just-buildsystem/rules-cc.git"

, "branch": "master"

, "repos": [{"repo": "rules", "alias": "rules-cc"}]

}

]

}

• libraries are built precisely against the declared version of their dependencies
• opens the problem of linking different version so the same library

⇝ slightly different design choices for dependency import, but also declarative

• Separation of dependency import, fetch, and build (even different tools)

Introduction Ignore Explore Declare Repository Graph Equality Summary

Another Declarative Approach (Justbuild ≈2022)

Meanwhile, at a different build system . . .

• Repositories use local names, bound in a global repository configuration

• Can be generated from declaration of direct inputs
{ "repositories":

{ "":

{ "repository": {"type": "file", "path": "."}

, "bindings": {"rules": "rules-cc"}

}

, "rules-cc":

{ "repository":

{ "type": "git"

, "repository": "https://github.com/just-buildsystem/rules-cc.git"

, "branch": "master"

, "commit": "2f549d26cf8def0a9b3a74790137b0b75b0a21b8"

, "subdir": "rules"

}

}

}

}

{ "repositories":

{ "":

{ "repository": {"type": "file", "path": "."}

, "bindings": {"rules": "rules-cc"}

}

}

, "imports":

[{ "source": "git"

, "url": "https://github.com/just-buildsystem/rules-cc.git"

, "branch": "master"

, "repos": [{"repo": "rules", "alias": "rules-cc"}]

}

]

}

• libraries are built precisely against the declared version of their dependencies
• opens the problem of linking different version so the same library

⇝ slightly different design choices for dependency import, but also declarative

• Separation of dependency import, fetch, and build (even different tools)

Introduction Ignore Explore Declare Repository Graph Equality Summary

Using Repository Stucture in Evaluation (Justbuild ≈2022)
Evaluation, however, uses the repository structure . . .

• Have a graph of repositories, know the transitive dependencies

• Repositories often have pinned content (given by commit hash, archive hash, . . .)

⇝ If nothing have changed, can take target value from cache

• We even have this as a service and avoid fetching dependencies
• Repository content queries (commit hash, archive hash, . . . → tree hash)
• Target queries (repo graph (hash), configuration, target),

answer hash, artifacts directly pushed to remote execution
(built on the fly, if not cached already)

• Especially useful when bootstrapping
(instead of more and more build images have one with /bin/sh and tcc,
and build tools from there)

• Logical repositories can reside in the same git repository!
⇝ organize the project structure (think “reverse visibility”)

Introduction Ignore Explore Declare Repository Graph Equality Summary

Using Repository Stucture in Evaluation (Justbuild ≈2022)
Evaluation, however, uses the repository structure . . .

• Have a graph of repositories, know the transitive dependencies

• Repositories often have pinned content (given by commit hash, archive hash, . . .)

⇝ If nothing have changed, can take target value from cache
• We even have this as a service and avoid fetching dependencies

• Repository content queries (commit hash, archive hash, . . . → tree hash)
• Target queries (repo graph (hash), configuration, target),

answer hash, artifacts directly pushed to remote execution
(built on the fly, if not cached already)

• Especially useful when bootstrapping
(instead of more and more build images have one with /bin/sh and tcc,
and build tools from there)

• Logical repositories can reside in the same git repository!
⇝ organize the project structure (think “reverse visibility”)

Introduction Ignore Explore Declare Repository Graph Equality Summary

Using Repository Stucture in Evaluation (Justbuild ≈2022)
Evaluation, however, uses the repository structure . . .

• Have a graph of repositories, know the transitive dependencies

• Repositories often have pinned content (given by commit hash, archive hash, . . .)

⇝ If nothing have changed, can take target value from cache
• We even have this as a service and avoid fetching dependencies

• Repository content queries (commit hash, archive hash, . . . → tree hash)
• Target queries (repo graph (hash), configuration, target),

answer hash, artifacts directly pushed to remote execution
(built on the fly, if not cached already)

• Especially useful when bootstrapping
(instead of more and more build images have one with /bin/sh and tcc,
and build tools from there)

• Logical repositories can reside in the same git repository!
⇝ organize the project structure (think “reverse visibility”)

Introduction Ignore Explore Declare Repository Graph Equality Summary

Using Repository Stucture in Evaluation (Justbuild ≈2022)
Evaluation, however, uses the repository structure . . .

• Have a graph of repositories, know the transitive dependencies

• Repositories often have pinned content (given by commit hash, archive hash, . . .)

⇝ If nothing have changed, can take target value from cache
• We even have this as a service and avoid fetching dependencies

• Repository content queries (commit hash, archive hash, . . . → tree hash)
• Target queries (repo graph (hash), configuration, target),

answer hash, artifacts directly pushed to remote execution
(built on the fly, if not cached already)

• Especially useful when bootstrapping
(instead of more and more build images have one with /bin/sh and tcc,
and build tools from there)

• Logical repositories can reside in the same git repository!
⇝ organize the project structure (think “reverse visibility”)

Introduction Ignore Explore Declare Repository Graph Equality Summary

Logical Repositories in a Monorepo

• Even in a monorepo, there is an internal structure
• differnt projects/teams
• often formalized: code ownership, approval requirements, . . .

• The dependency structure between those subprojects changes rarely
(therefore, litte effort to maintain explicit description thereof)

• compilers, tool chains
• base libraries
• frameworks
• applications

Introduction Ignore Explore Declare Repository Graph Equality Summary

Justbuild Target Value Example

$ just-mr analyse libbar | "libfoo.a"

INFO: Performing repositories setup |],

INFO: Found 2 repositories involved | "link-deps": {

INFO: Setup finished, exec ["just","analyse","-C","/example/.home/.cache/... | "libfoo.a": {"data":{"file_type":"f","id":"e8d8b9899fbf552ef2...

INFO: Requested target is [["@","","","libbar"],{}] | },

INFO: Analysed target [["@","","","libbar"],{}] | "lint": [

INFO: Export targets found: 1 cached, 0 uncached, 0 not eligible for caching |],

INFO: Result of target [["@","","","libbar"],{}]: { | "package": {

"artifacts": { | "cflags-files": {},

"libbar.a": {"data":{"file_type":"f","id":"d4b3d0780802611407dc... | "ldflags-files": {},

}, | "name": "bar"

"provides": { | },

"compile-args": [| "run-libs": {

], | },

"compile-deps": { | "run-libs-args": [

"foo.hpp": {"data":{"file_type":"f","id":"c2f3fff7ff446f92f2a... |]

}, | },

"debug-hdrs": { | "runfiles": {

}, | "bar.hpp": {"data":{"file_type":"f","id":"2bd3ee3212fd330137391...

"debug-srcs": { | }

}, | }

"dwarf-pkg": { | $

}, |

"link-args": [|

"libbar.a", |

Introduction Ignore Explore Declare Repository Graph Equality Summary

Using Repository Stucture in Evaluation (Justbuild ≈2022), Prerequisites

• Concept of what a target looks like to others (indendent of its origin!)
• artifacts (e. g., libbar.a)
• dev-artifacts (e. g., bar.hpp)
• additional usage information

• link order
• transitive artifacts needed for building, linking, . . .
• abstract graph nodes for reflection (e. g., proto library)
• . . .

⇝ Notion of equality (Targets coinciding in this data must be indistinguishable)

• Target must only depend on its repo and the transitive dependencies thereof
⇝ Notion of equality for repos

• no comparison on target-references
• would have to include global name if we did Bazel-style path mangling

Introduction Ignore Explore Declare Repository Graph Equality Summary

Using Repository Stucture in Evaluation (Justbuild ≈2022), Prerequisites

• Concept of what a target looks like to others (indendent of its origin!)
• artifacts (e. g., libbar.a)
• dev-artifacts (e. g., bar.hpp)
• additional usage information

• link order
• transitive artifacts needed for building, linking, . . .
• abstract graph nodes for reflection (e. g., proto library)
• . . .

⇝ Notion of equality (Targets coinciding in this data must be indistinguishable)

• Target must only depend on its repo and the transitive dependencies thereof
⇝ Notion of equality for repos

• no comparison on target-references
• would have to include global name if we did Bazel-style path mangling

Introduction Ignore Explore Declare Repository Graph Equality Summary

Output paths
• Many build systems (including Bazel, . . .) do path mangling

• Command-line interpolation with $(location ...)
• Leaking canonical repository name ⇝ different actions if main/dep repo
• Full branching on config transtions, even if only tiny part really depends

• Why? To get unique outputpath (relative to the build root)
• overlapping outputs check, confinement of outputs to package

• Why? Becaues build is seen as imperative: Want a side-effect on the file system!
• Synchronisation of processes; no two builds with same output root simultaneously

• However our main model of computation, remote execution, is functional
• Cachable input/output relation
• actions independent, inputs can be placed anywhere in the logical space

• Easy to make local builds model remote execution:
fresh action directory, hard-link in, action, hard-link out; artifacts in CAS

• Break with make and use functional approach?! (e. g., justbuild)
⇝ compute result, ask for specific output (or tell where to install)

Introduction Ignore Explore Declare Repository Graph Equality Summary

Output paths
• Many build systems (including Bazel, . . .) do path mangling

• Command-line interpolation with $(location ...)
• Leaking canonical repository name ⇝ different actions if main/dep repo
• Full branching on config transtions, even if only tiny part really depends

• Why? To get unique outputpath (relative to the build root)
• overlapping outputs check, confinement of outputs to package

• Why? Becaues build is seen as imperative: Want a side-effect on the file system!
• Synchronisation of processes; no two builds with same output root simultaneously

• However our main model of computation, remote execution, is functional
• Cachable input/output relation
• actions independent, inputs can be placed anywhere in the logical space

• Easy to make local builds model remote execution:
fresh action directory, hard-link in, action, hard-link out; artifacts in CAS

• Break with make and use functional approach?! (e. g., justbuild)
⇝ compute result, ask for specific output (or tell where to install)

Introduction Ignore Explore Declare Repository Graph Equality Summary

Output paths
• Many build systems (including Bazel, . . .) do path mangling

• Command-line interpolation with $(location ...)
• Leaking canonical repository name ⇝ different actions if main/dep repo
• Full branching on config transtions, even if only tiny part really depends

• Why? To get unique outputpath (relative to the build root)
• overlapping outputs check, confinement of outputs to package

• Why? Becaues build is seen as imperative: Want a side-effect on the file system!
• Synchronisation of processes; no two builds with same output root simultaneously

• However our main model of computation, remote execution, is functional
• Cachable input/output relation
• actions independent, inputs can be placed anywhere in the logical space

• Easy to make local builds model remote execution:
fresh action directory, hard-link in, action, hard-link out; artifacts in CAS

• Break with make and use functional approach?! (e. g., justbuild)
⇝ compute result, ask for specific output (or tell where to install)

Introduction Ignore Explore Declare Repository Graph Equality Summary

Output paths
• Many build systems (including Bazel, . . .) do path mangling

• Command-line interpolation with $(location ...)
• Leaking canonical repository name ⇝ different actions if main/dep repo
• Full branching on config transtions, even if only tiny part really depends

• Why? To get unique outputpath (relative to the build root)
• overlapping outputs check, confinement of outputs to package

• Why? Becaues build is seen as imperative: Want a side-effect on the file system!
• Synchronisation of processes; no two builds with same output root simultaneously

• However our main model of computation, remote execution, is functional
• Cachable input/output relation
• actions independent, inputs can be placed anywhere in the logical space

• Easy to make local builds model remote execution:
fresh action directory, hard-link in, action, hard-link out; artifacts in CAS

• Break with make and use functional approach?! (e. g., justbuild)
⇝ compute result, ask for specific output (or tell where to install)

Introduction Ignore Explore Declare Repository Graph Equality Summary

Output paths
• Many build systems (including Bazel, . . .) do path mangling

• Command-line interpolation with $(location ...)
• Leaking canonical repository name ⇝ different actions if main/dep repo
• Full branching on config transtions, even if only tiny part really depends

• Why? To get unique outputpath (relative to the build root)
• overlapping outputs check, confinement of outputs to package

• Why? Becaues build is seen as imperative: Want a side-effect on the file system!
• Synchronisation of processes; no two builds with same output root simultaneously

• However our main model of computation, remote execution, is functional
• Cachable input/output relation
• actions independent, inputs can be placed anywhere in the logical space

• Easy to make local builds model remote execution:
fresh action directory, hard-link in, action, hard-link out; artifacts in CAS

• Break with make and use functional approach?! (e. g., justbuild)
⇝ compute result, ask for specific output (or tell where to install)

Introduction Ignore Explore Declare Repository Graph Equality Summary

Output paths
• Many build systems (including Bazel, . . .) do path mangling

• Command-line interpolation with $(location ...)
• Leaking canonical repository name ⇝ different actions if main/dep repo
• Full branching on config transtions, even if only tiny part really depends

• Why? To get unique outputpath (relative to the build root)
• overlapping outputs check, confinement of outputs to package

• Why? Becaues build is seen as imperative: Want a side-effect on the file system!
• Synchronisation of processes; no two builds with same output root simultaneously

• However our main model of computation, remote execution, is functional
• Cachable input/output relation
• actions independent, inputs can be placed anywhere in the logical space

• Easy to make local builds model remote execution:
fresh action directory, hard-link in, action, hard-link out; artifacts in CAS

• Break with make and use functional approach?! (e. g., justbuild)
⇝ compute result, ask for specific output (or tell where to install)

Introduction Ignore Explore Declare Repository Graph Equality Summary

Summary

• External dependency handling: went from operational to denotational semantics

• Splitting in (logical) repos can document code structure

• This additional structure can be used to keep target and action graph small

• This works best, when using a more functional understanding of build
⇝ time to fully break compatibility with make?

	Introduction
	Introduction

	Ignore
	Ignore

	Explore
	Explore

	Declare
	Declare

	Repository Graph
	Repository Graph

	Equality
	Equality

	Summary
	Summary

