Bazel How Bazel Works Open-Sourcing
[e]

(e} [e]
[e]o]e} o
[e]
[e]

Bazel

{fast, correct} — choose two

Klaus Aehlig

February 4-5, 2017

Summary

Bazel How Bazel Works Open-Sourcing Summary
[e]

0 (e}
[e]o]e} o [e]
[e]

[e]

Bazel

What is Bazel?

Bazel How Bazel Works Open-Sourcing
[e]

0 (e}
[e]o]e} o
[e]
[e]

Bazel

What is Bazel?

e Bazel is a build tool

Summary

Bazel How Bazel Works Open-Sourcing Summary
[e]

[1o} [e]
[e]o]e} o [e]
[e]

[e]

Bazel

What is Bazel?

e Bazel is a build tool
like make, etc, it organises compiling/creating
artifacts (libraries, executables, ...) from sources

Bazel How Bazel Works Open-Sourcing
[e]

0 (e}
[e]o]e} o
[e]
[e]

Bazel

What is Bazel?

e Bazel is a build tool

Summary

Bazel How Bazel Works Open-Sourcing
[e]

0 [e]
[e]o]e} o
[e]
[e]

Bazel

What is Bazel?

e Bazel is a build tool
e core part of a tool
used internally at Google since over a decade

Summary

Bazel How Bazel Works Open-Sourcing
[e]

[1o} [e]
[e]o]e} o
[e]

[e]

Bazel

What is Bazel?

e Bazel is a build tool
e core part of a tool
used internally at Google since over a decade
~~ optimized for Google's internal use case

Summary

How Bazel Works Open-Sourcing
o] [e]

000 [e]

o]

o]

Bazel

What is Bazel?

e Bazel is a build tool
e core part of a tool
used internally at Google since over a decade
~~ optimized for Google's internal use case
e large code base in a single source tree (= 107 files)

Summary

[e]
[e]

Bazel How Bazel Works Open-Sourcing
[e]

[1o} [e]
[e]o]e} o
[e]

[e]

Bazel

What is Bazel?

e Bazel is a build tool
e core part of a tool
used internally at Google since over a decade
~~ optimized for Google's internal use case

e large code base in a single source tree (=~ 107 files)
e majority of engineers (~ 10*5) actively working

on that single code base.

Summary

[e]
[e]

Bazel How Bazel Works Open-Sourcing
[e]

[1o} [e]
[e]o]e} o
[e]

[e]

Bazel

What is Bazel?

e Bazel is a build tool
e core part of a tool
used internally at Google since over a decade

~ optimized for Google's internal use case (large mono-repo)

Summary

[e]
[e]

Bazel How Bazel Works

Open-Sourcing Summary
e0 [e]

[e]

[e]
[e]o]e} o [e]
[e]

[e]

Bazel

What is Bazel? \

e Bazel is a build tool
e core part of a tool
used internally at Google since over a decade
~ optimized for Google's internal use case (large mono-repo)
e open-sourced only in 2015
(in fact, still going on)

Bazel How Bazel Works Open-Sourcing Summary
[e]

oe (e}
[e]o]e} o [e]
[e]

[e]

What is Bazel Good for?

What is Bazel? And what is special about it? \

Bazel How Bazel Works Open-Sourcing
[e]

oce [e]
[e]o]e} o
[e]
[e]

What is Bazel Good for?

What is Bazel? And what is special about it?

e optimized for large mono-repos, therefore. . .

\

Summary

Bazel How Bazel Works Open-Sourcing Summary
[e]

oe [e] [e]
[e]o]e} o [e]
[e]

[e]

What is Bazel Good for?

What is Bazel? And what is special about it? \

e optimized for large mono-repos, therefore. . .
e aggressive caching

Bazel How Bazel Works Open-Sourcing Summary
[e]

oe [e] [e]
[e]o]e} o [e]
[e]

[e]

What is Bazel Good for?

What is Bazel? And what is special about it? \

e optimized for large mono-repos, therefore. . .
e aggressive caching without losing correctness
(i.e., all artifacts as if freshly built from source)

Bazel How Bazel Works Open-Sourcing Summary
[e]

oe [e]
[e]o]e} o [e]
[e]

[e]

What is Bazel Good for?

What is Bazel? And what is special about it? \

e optimized for large mono-repos, therefore. . .
e aggressive caching without losing correctness

Bazel How Bazel Works Open-Sourcing Summary
[e]

oe [e] [e]
[e]o]e} o [e]
[e]

[e]

What is Bazel Good for?

What is Bazel? And what is special about it? \

e optimized for large mono-repos, therefore. . .

e aggressive caching without losing correctness
e declarative style of BUILD files

Bazel How Bazel Works Open-Sourcing Summary
[e]

oe [e] [e]
[e]o]e} o [e]
[e]

[e]

What is Bazel Good for?

What is Bazel? And what is special about it? \

e optimized for large mono-repos, therefore. . .
e aggressive caching without losing correctness
e declarative style of BUILD files
e separation of concerns
writing code vs choosing correct (cross) compiling strategy

Bazel How Bazel Works Open-Sourcing Summary
oe o] [e] o]

000 [e] o]

o]

[e]

What is Bazel Good for?

What is Bazel? And what is special about it? \

e optimized for large mono-repos, therefore. . .
e aggressive caching without losing correctness
e declarative style of BUILD files
e separation of concerns
writing code vs choosing correct (cross) compiling strategy
e central maintenance point for build rules

Bazel How Bazel Works Open-Sourcing Summary
[e]

oe [e] [e]
[e]o]e} o [e]
[e]

[e]

What is Bazel Good for?

What is Bazel? And what is special about it? \

e optimized for large mono-repos, therefore. . .

e aggressive caching without losing correctness
e declarative style of BUILD files

Bazel How Bazel Works Open-Sourcing Summary
[e]

(e} o
[e]o]e} o [e]
[e]

[e]

Overview of a bazel build

What is Bazel? And how does it build? \

Bazel How Bazel Works
00 [

000

o

Open-Sourcing Summary
[e]

o
[e]

Overview of a bazel build

What is Bazel? And how does it build? \

e load the BUILD files (all that are needed)

Bazel How Bazel Works Open-Sourcing Summary
[e]

(e} []
[e]o]e} o [e]
[e]

[e]

Overview of a bazel build

What is Bazel? And how does it build? \

e load the BUILD files (all that are needed)
e analyze dependencies between targets

Bazel How Bazel Works Open-Sourcing Summary
[e]

(e} []
[e]o]e} o [e]
[e]

[e]

Overview of a bazel build

What is Bazel? And how does it build? \

e load the BUILD files (all that are needed)
e analyze dependencies between targets
e from rules generate action graph

Bazel How Bazel Works Open-Sourcing Summary
[e]

(e} [] [e]
[e]o]e} o [e]
[e]

[e]

Overview of a bazel build

What is Bazel? And how does it build? \

load the BUILD files (all that are needed)
analyze dependencies between targets
from rules generate action graph

execute actions (unless already cached)

Bazel How Bazel Works Open-Sourcing Summary
[o]e] [] [e] o]

000 [e] o]

o]

[e]

Overview of a bazel build

What is Bazel? And how does it build? \

load the BUILD files (all that are needed)
analyze dependencies between targets
from rules generate action graph

execute actions (unless already cached)

on subsequent builds, update the graphs
(client-server architecture to keep graph in memory)

Bazel How Bazel Works Open-Sourcing
[o]e] o] [e]

@00 [e]

o]

o]

An Example

Let's look at a helloworld example.

Summary

[e]
[e]

Bazel How Bazel Works Open-Sourcing Summary
[o]e] o] [e] o]
@00 [e] o]
o]

o]

An Example

e main program helloworld.c helloworld.c

How Bazel Works

@00

An Example

e main program helloworld.c helloworld.c

#include "lib/hello.h"

int main(int argc, char **argv) {
greet ("world");
return O;

}

How Bazel Works

@00

An Example

e main program helloworld.c, helloworld.c
depending on a library

How Bazel Works

@00

An Example

main program helloworld.c, helloworld.c
depending on a library lib
a library with headers (1ib/hello.h)

| hello.h

#ifndef HELLO_H
#define HELLO_H

void greet(char *);

#tendif

How Bazel Works

@00

An Example

e main program helloworld.c, | helloworld.c
depending on a library lib
e a library with headers (1ib/hello.h)
. and implementation (1ib/hello.c)

| hello.h

#include "hello.h" | hello.c
#include <stdio.h>

void greet(char *it) {
printf ("Hello %s!", it);

}

How Bazel Works

@00

An Example

e main program helloworld.c, | helloworld.c
depending on a library lib
e a library with headers (1ib/hello.h)
. and implementation (1ib/hello.c)

| hello.h
hello.c

How Bazel Works

@00

An Example | WORKSPACE
e main program helloworld.c, helloworld.c
depending on a library lib

e a library with headers (1ib/hello.h)
. and implementation (1ib/hello.c)

e then we can have an empty WORKSPACE file [hello.h

hello.c

How Bazel Works

@00

An Example WORKSPACE

L BUILD
e main program helloworld.c, | helloworld.c
depending on a library lib
e a library with headers (1ib/hello.h) BUILD
. and implementation (1ib/hello.c) —
e then we can have an empty WORKSPACE file [hello.h
. and the following declarative BUILD files "~ hello.c
cc_binary(cc_library(
name="helloworld", name="hello",
srcs=["helloworld.c"], srcs=glob(["*.c"]),
deps=["//1lib:hello"], hdrs=glob(["*.h"]),

))

How Bazel Works

@00

An Example WORKSPACE

L BUILD
e main program helloworld.c, | helloworld.c
depending on a library lib
e a library with headers (1ib/hello.h) BUILD
. and implementation (1ib/hello.c) —
e then we can have an empty WORKSPACE file [hello.h
. and the following declarative BUILD files "~ hello.c
cc_binary(cc_library(
name="helloworld", name="hello",
srcs=["helloworld.c"], srcs=glob(["*.c"]),
deps=["//1lib:hello"], hdrs=glob(["*.h"]),
))

Note: CC, link options, host/target architecture, etc,
taken care of elsewhere.

Bazel How Bazel Works Open-Sourcing Summary
[e]

(e} [e] [e]
oeo o [e]
[e]

[e]

Example cont'd: Dependencies

Now let's see what happens if we want to build :helloworld. ..

command

Bazel How Bazel Works Open-Sourcing Summary
[o]e] o] [e] o]
oeo [e] o]
o]

[e]

Example cont'd: Dependencies

[#:nefloworld | ——= [build /helloworld

We look at the target :helloworld

Bazel How Bazel Works Open-Sourcing Summary
[o]e] o] [e] o]
oeo [e] o]
o]

[e]

Example cont'd: Dependencies

() ——» [helloworld | ——= [build /zhelloworid

We look at the target :helloworld, in package //

target

Bazel How Bazel Works Open-Sourcing Summary
[o]e] o] [e] o]

oeo [e] o]

o]

[e]

Example cont'd: Dependencies

() ——» [helloworld | ——= [build /zhelloworid

We look at the target :helloworld, in package //, in file BUILD

Summary

Bazel How Bazel Works Open-Sourcing

[o]e] o] [e] o]
oeo [e] o]
o]
o]

Example cont'd: Dependencies
() ———» [helloworld | ——= [build /zhelloworid

/Nib:hello

Two declared dependencies

Bazel How Bazel Works Open-Sourcing Summary

ceo

Example cont'd: Dependencies
() ———» [helloworld | ——= [build /zhelloworid

/Nib:hello

Two declared dependencies

command

. and implicit dependency on the C tool chain

(not drawn in this diagram) [enren]

How Bazel Works

oeo

Example cont'd: Dependencies

() ———» [helloworld | ——= [build /zhelloworid

]~ &) []

Two declared dependencies, one in a different package
Note: We construct dependency graph over package boundaries!

mmmmmm d

(no recursive calling) g

Bazel How Bazel Works Open-Sourcing Summary

0e0

Example cont'd: Dependencies

[#:nefloworld | ——= [build /helloworld

glob ["*.h"]

-\"M\

BUILD — /Ilb — | //lib:hello

We discover glob expressions

target

How Bazel Works

oeo

Example cont'd: Dependencies

[#:nefloworld | ——= [build /helloworld

E, e
—~ (@) \
[Bu | —» //nb - >

We discover glob expressions, and read the directory.

command

target

How Bazel Works

oeo

Example cont’d' Dependencies

| I/helloworld | — | build //:helloworld

E heIIoworId pic.o heIIoworId

o
—a glob[" \
//Ilbhello

BUILD — //|Ib —_—

[helloc | ———— libthello.pic.o —~ I|bl||bhe||o.{a,so}

The rules tell us, which artifacts to build.

command

target

artefact

How Bazel Works

oeo

Example cont'd: Dependencies

- helloworld.pic.0 =——————— helloworld

[helloc | ————libihello.pic.o —~libllibhello.{a,so}

artefact

How Bazel Works

oeo

Example cont’d' Dependencies

| I/helloworld | — | build //:helloworld

E heIIoworId pic.o heIIoworId

o
—a glob[" \
//Ilbhello

BUILD — //|Ib —_—

[helloc | ———— libthello.pic.o —~ I|bl||bhe||o.{a,so}

command

target

artefact

How Bazel Works

ooce

Example cont'd: Adding a File

[#:netioworld | ——~ | build //:helloworld

E helloworld.pic.o heIIoworId
-
—~ (@) \

BUILD — //Ilb E— //Ilbhello

[helloc | ———— libthello.pic.o —~ I|bl||bhe||o.{a,so}

command

target

artefact

How Bazel Works

ooce

Example cont'd: Adding a File

[#:netioworld | ——~ | build //:helloworld

[retovorias | /W helloworld
-
—~ (@) \

BUILD — //Ilb E— //Ilbhello

[helloc | ———— libthello.pic.o —~ I|bl||bhe||o.{a,so}

command

target

artefact

How Bazel Works

ooce

Example cont'd: Adding a File

[#:netioworld | ——~ | build //:helloworld

[retovorias | /W helloworld
E] e
—~ (@) \

BUILD — //Ilb E— //Ilbhello

[helloc | ———— libthello.pic.o —~ I|bl||bhe||o.{a,so}

command

target

artefact

How Bazel Works

ooce

Example cont'd: Adding a File

[/:nelioworld | ——~ | build //:helloworld

E helloworld.pic.o heIIoworId
e
— (@) \

BUILD — //Ilb E— //Ilbhello

[helloc | ———— libthello.pic.o —~ I|bl||bhe||o.{a,so}

command

target

artefact

How Bazel Works

ooce

Example cont'd: Adding a File

[/:nelioworld | ——~ | build //:helloworld

E helloworld.pic.o heIIoworId
-
—~ (@) \

BUILD — //Ilb E— //Ilbhello

[helloc | ———— libthello.pic.o —~ I|bl||bhe||o.{a,so}

command

target

artefact

How Bazel Works

ooce

Example cont'd: Adding a File
[/:nelioworld | ——~ | build //:helloworid

E helloworld.pic.o heIIoworId
-
—~ (@) \

BUILD — //Ilb E— //Ilbhello

- g lib/hell0.pic.0 =P I|bl||bhe||o {a,s0}

=

lib/foo.pic.o

command

target

artefact

How Bazel Works

ooce

Example cont'd: Adding a File

[#:netioworld | ——~ | build //:helloworld

E helloworld.pic.o heIIoworId
-
—~ (@) \

BUILD — //Ilb E— //Ilbhello

- g lib/hell0.pic.0 =P I|bl||bhe||o {a,s0}

=

lib/foo.pic.o

command

target

artefact

How Bazel Works

ooce

Example cont'd: Adding a File

[#:netioworld | ——~ | build //:helloworld

E helloworld.pic.o heIIoworId
-
—~ (@) \

BUILD — //Ilb E— //Ilbhello

- g lib/hell0.pic.0 =P I|bl||bhe||o {a,s0}

=

lib/foo.pic.o

command

target

artefact

(O @ (=»

«E»

Q>

Bazel How Bazel Works Open-Sourcing

(e} [e] o
000 o
o
[e]

Actions

e action do the actual work of building

Summary

[e]
[e]

Bazel How Bazel Works Open-Sourcing Summary

Actions

e action do the actual work of building
...and hence take the most time

How Bazel Works

Actions

e action do the actual work of building
... and hence take the most time
~> particularly interesting to avoid unnecessary actions

How Bazel Works

Actions

e action do the actual work of building
... and hence take the most time
~> particularly interesting to avoid unnecessary actions
e dependency graph shows if prerequisites changed

How Bazel Works

Actions

e action do the actual work of building
... and hence take the most time
~> particularly interesting to avoid unnecessary actions
e dependency graph shows if prerequisites changed
e caching of input/output-relation itself

How Bazel Works

Actions

e action do the actual work of building
... and hence take the most time
~> particularly interesting to avoid unnecessary actions
e dependency graph shows if prerequisites changed
e caching of input/output-relation itself
I' requires all inputs/outputs to be known to bazel

How Bazel Works

Actions

e action do the actual work of building
... and hence take the most time
~> particularly interesting to avoid unnecessary actions

e dependency graph shows if prerequisites changed
e caching of input/output-relation itself

I' requires all inputs/outputs to be known to bazel
e so, no .done_foo targets,
e and only reading declared inputs

How Bazel Works

Actions

e action do the actual work of building
... and hence take the most time
~> particularly interesting to avoid unnecessary actions
e dependency graph shows if prerequisites changed
e caching of input/output-relation itself
I' requires all inputs/outputs to be known to bazel

How Bazel Works

Actions

e action do the actual work of building
... and hence take the most time
~> particularly interesting to avoid unnecessary actions
e dependency graph shows if prerequisites changed
e caching of input/output-relation itself
I' requires all inputs/outputs to be known to bazel
~~ facilitate correct |/O by running actions in “sandboxes”

How Bazel Works

Actions

e action do the actual work of building
... and hence take the most time
~> particularly interesting to avoid unnecessary actions
e dependency graph shows if prerequisites changed
e caching of input/output-relation itself
I' requires all inputs/outputs to be known to bazel
~~ facilitate correct |/O by running actions in “sandboxes”
e isolated environment

e only declared inputs/tools present
e only declared outputs copied out

How Bazel Works

Actions

e action do the actual work of building
... and hence take the most time
~> particularly interesting to avoid unnecessary actions
e dependency graph shows if prerequisites changed
e caching of input/output-relation itself
I' requires all inputs/outputs to be known to bazel
~~ facilitate correct |/O by running actions in “sandboxes”
e isolated environment
e only declared inputs/tools present
e only declared outputs copied out
e depending on OS, different approaches
(chroot, temp dir, ...)

How Bazel Works

Actions

e action do the actual work of building
... and hence take the most time
~> particularly interesting to avoid unnecessary actions
e dependency graph shows if prerequisites changed
e caching of input/output-relation itself
I' requires all inputs/outputs to be known to bazel
~~ facilitate correct |/O by running actions in “sandboxes”

How Bazel Works

Actions

e action do the actual work of building
... and hence take the most time
~> particularly interesting to avoid unnecessary actions
e dependency graph shows if prerequisites changed
e caching of input/output-relation itself
I' requires all inputs/outputs to be known to bazel
~~ facilitate correct |/O by running actions in “sandboxes”
e bonus: remote execution

How Bazel Works

Actions

action do the actual work of building

... and hence take the most time

particularly interesting to avoid unnecessary actions
e dependency graph shows if prerequisites changed
e caching of input/output-relation itself

I' requires all inputs/outputs to be known to bazel
facilitate correct |/O by running actions in “sandboxes”
bonus: remote execution

= enables shared caches.

(All engineers working on the same code base!)

Extending Bazel

(O @ (=»

«=

Q>

Bazel How Bazel Works Open-Sourcing
[e]

(e} [e]
[e]o]e} o
[e]
°

Extending Bazel

e Bazel has built-in rules

Summary

[e]
[e]

Bazel How Bazel Works Open-Sourcing Summary
.
Extending Bazel

e Bazel has built-in rules

e specialized rules with knowledge about certain languages
cc_library, cc_binary, java_library, java_binary, ...

How Bazel Works

Extending Bazel

e Bazel has built-in rules
e specialized rules with knowledge about certain languages

cc_library, cc_binary, java_library, java_binary, ...

e generic ones, in particular genrule

How Bazel Works

Extending Bazel

e Bazel has built-in rules
e specialized rules with knowledge about certain languages

cc_library, cc_binary, java_library, java_binary, ...

e generic ones, in particular genrule
— just specify a shell command (with $@, $<, ...)

How Bazel Works

Extending Bazel

e Bazel has built-in rules
e specialized rules with knowledge about certain languages

cc_library, cc_binary, java_library, java_binary, ...

e generic ones, in particular genrule
— just specify a shell command (with $@, $<, ...)
(basically the only rule available in a Makefile)

Bazel How Bazel Works Open-Sourcing
[e]

(e} [e]
[e]o]e} o
[e]
°

Extending Bazel

e Bazel has built-in rules

Summary

[e]
[e]

Bazel How Bazel Works Open-Sourcing Summary
[o]e] o] [e] o]
000 [e] o]
o]

Extending Bazel

e Bazel has built-in rules
e but adding specialized rules for every language doesn’t scale

How Bazel Works

Extending Bazel

e Bazel has built-in rules
e but adding specialized rules for every language doesn’t scale
~+ need ways to extend BUILD language

How Bazel Works

Extending Bazel

e Bazel has built-in rules
e but adding specialized rules for every language doesn’t scale
~» need ways to extend BUILD language: Skylark

How Bazel Works

Extending Bazel

e Bazel has built-in rules
e but adding specialized rules for every language doesn’t scale
~» need ways to extend BUILD language: Skylark
e Python-like language (familiar syntax)

How Bazel Works

Extending Bazel
e Bazel has built-in rules
e but adding specialized rules for every language doesn’t scale
~» need ways to extend BUILD language: Skylark
e Python-like language (familiar syntax)

e but restricted to a simple core
without global state, complicated features, . ..

How Bazel Works

Extending Bazel

e Bazel has built-in rules
e but adding specialized rules for every language doesn’t scale
~» need ways to extend BUILD language: Skylark
e Python-like language (familiar syntax)
e but restricted to a simple core
without global state, complicated features, . ..
~ deterministic, hermetic evaluation

How Bazel Works

Extending Bazel

e Bazel has built-in rules
e but adding specialized rules for every language doesn’t scale
~» need ways to extend BUILD language: Skylark

How Bazel Works

Extending Bazel

e Bazel has built-in rules

e but adding specialized rules for every language doesn’t scale
~» need ways to extend BUILD language: Skylark

e simple case: can compose it from existing rules

How Bazel Works

Extending Bazel

e Bazel has built-in rules
e but adding specialized rules for every language doesn’t scale
~» need ways to extend BUILD language: Skylark
e simple case: can compose it from existing rules
“that sh-script with these params; always create 5 targets ..."

How Bazel Works

Extending Bazel

e Bazel has built-in rules

e but adding specialized rules for every language doesn’t scale
~» need ways to extend BUILD language: Skylark

e simple case: can compose it from existing rules ~» macros

How Bazel Works

Extending Bazel

e Bazel has built-in rules

e but adding specialized rules for every language doesn’t scale
~» need ways to extend BUILD language: Skylark

e simple case: can compose it from existing rules ~» macros

def mylang(name="", param="default", srcs=[]):

script = str(Label("//rules/mylang:bld.sh"))
native.genrule(

name = name + "_out",

tools = [script],

cmd = "env ... $(location " + script + ")"

+ "... $@ $(SRCS)",
)

native....

How Bazel Works

Extending Bazel

e Bazel has built-in rules

e but adding specialized rules for every language doesn’t scale
~» need ways to extend BUILD language: Skylark

e simple case: can compose it from existing rules ~» macros

How Bazel Works

Extending Bazel

Bazel has built-in rules

but adding specialized rules for every language doesn’t scale
need ways to extend BUILD language: Skylark

simple case: can compose it from existing rules ~» macros
all extensions are loaded in BUILD files

load("//....bzl", "mylang")

How Bazel Works

Extending Bazel

Bazel has built-in rules

but adding specialized rules for every language doesn’t scale
need ways to extend BUILD language: Skylark

simple case: can compose it from existing rules ~» macros
all extensions are loaded in BUILD files

load("//....bzl", "mylang")

not so simple case: rules

freely specify actions, argument declaration, ...

Bazel How Bazel Works Open-Sourcing Summary
[o]e] [e] L[]

000 [e] o]
o]

[e]

The Task of Open-Sourcing Bazel

Bazel How Bazel Works Open-Sourcing Summary
°

(e} [e] [e]
[e]o]e} o [e]
[e]

[e]

The Task of Open-Sourcing Bazel

Bazel became open-source only after years of internal use

Bazel How Bazel Works Open-Sourcing Summary
°

(e} [e] [e]
[e]o]e} o [e]
[e]

[e]

The Task of Open-Sourcing Bazel

Bazel became open-source only after years of internal use
. on a single repository. (large, but just one)

Bazel How Bazel Works Open-Sourcing Summary

The Task of Open-Sourcing Bazel

Bazel became open-source only after years of internal use
. on a single repository. (large, but just one)

e lot of dependencies, including Google-specific ones

Open-Sourcing
°

The Task of Open-Sourcing Bazel

Bazel became open-source only after years of internal use
. on a single repository. (large, but just one)

e lot of dependencies, including Google-specific ones
“We have those libs anyway, so let’s just use them.”

Bazel How Bazel Works Open-Sourcing Summary

The Task of Open-Sourcing Bazel

Bazel became open-source only after years of internal use
. on a single repository. (large, but just one)

e lot of dependencies, including Google-specific ones

Open-Sourcing
°

The Task of Open-Sourcing Bazel

Bazel became open-source only after years of internal use
. on a single repository. (large, but just one)

e lot of dependencies, including Google-specific ones
e focus on the “Google languages” (and that built in)

Open-Sourcing
°

The Task of Open-Sourcing Bazel

Bazel became open-source only after years of internal use
. on a single repository. (large, but just one)

e lot of dependencies, including Google-specific ones
e focus on the “Google languages” (and that built in)
e no stable interfaces

Open-Sourcing
°

The Task of Open-Sourcing Bazel

Bazel became open-source only after years of internal use
. on a single repository. (large, but just one)

e lot of dependencies, including Google-specific ones
e focus on the “Google languages” (and that built in)
e no stable interfaces
“I know all the uses of my interface, so | can easily change it.”

Open-Sourcing
°

The Task of Open-Sourcing Bazel

Bazel became open-source only after years of internal use
. on a single repository. (large, but just one)

e lot of dependencies, including Google-specific ones
e focus on the “Google languages” (and that built in)
e no stable interfaces

Open-Sourcing
°

The Task of Open-Sourcing Bazel

Bazel became open-source only after years of internal use
. on a single repository. (large, but just one)

lot of dependencies, including Google-specific ones
focus on the “Google languages” (and that built in)
no stable interfaces

hard-coded paths everywhere

Open-Sourcing
°

The Task of Open-Sourcing Bazel

Bazel became open-source only after years of internal use
. on a single repository. (large, but just one)

lot of dependencies, including Google-specific ones

focus on the “Google languages” (and that built in)

no stable interfaces

hard-coded paths everywhere

“I know how my environment and how my compiler is called.”

Open-Sourcing
°

The Task of Open-Sourcing Bazel

Bazel became open-source only after years of internal use
. on a single repository. (large, but just one)

lot of dependencies, including Google-specific ones
focus on the “Google languages” (and that built in)
no stable interfaces

hard-coded paths everywhere

Open-Sourcing
°

The Task of Open-Sourcing Bazel

Bazel became open-source only after years of internal use
. on a single repository. (large, but just one)

lot of dependencies, including Google-specific ones
focus on the “Google languages” (and that built in)
no stable interfaces

hard-coded paths everywhere

Bazel Roadmap

(O @ (=»

«=

Q>

Bazel How Bazel Works Open-Sourcing Summary
[e]

(e} [e] [e]
[e]o]e} [] [e]
[e]

[e]

Bazel Roadmap

e Big goal “1.0". Properly open-source (expected 2018).

Bazel How Bazel Works Open-Sourcing Summary

(e} [e] o [e]
[e]o]e} [] [e]
[e]

[e]

Bazel Roadmap

e Big goal “1.0". Properly open-source (expected 2018).
e public primary repository

Bazel How Bazel Works Open-Sourcing Summary

Bazel Roadmap

e Big goal “1.0". Properly open-source (expected 2018).
e public primary repository
~~ clear interfaces between bazel, and, e.g., Google's use

Bazel How Bazel Works Open-Sourcing Summary

(e} [e] o [e]
[e]o]e} [] [e]
[e]

[e]

Bazel Roadmap

e Big goal “1.0". Properly open-source (expected 2018).
e public primary repository

Bazel How Bazel Works Open-Sourcing Summary

Bazel Roadmap

e Big goal “1.0". Properly open-source (expected 2018).
e public primary repository
o all design reviews public

Bazel How Bazel Works Open-Sourcing Summary

Bazel Roadmap

e Big goal “1.0". Properly open-source (expected 2018).
e public primary repository
o all design reviews public
e core team consisting not only of Google employees

Open-Sourcing

Bazel Roadmap

e Big goal “1.0". Properly open-source (expected 2018).
e public primary repository
o all design reviews public
e core team consisting not only of Google employees
e stable build language and APlIs

Open-Sourcing

Bazel Roadmap

e Big goal “1.0". Properly open-source (expected 2018).
e public primary repository
o all design reviews public
e core team consisting not only of Google employees
e stable build language and APlIs

e On the way there, technical improvements

Open-Sourcing

Bazel Roadmap

e Big goal “1.0". Properly open-source (expected 2018).
e public primary repository
o all design reviews public
e core team consisting not only of Google employees
e stable build language and APlIs

e On the way there, technical improvements
e remote execution API

Open-Sourcing

Bazel Roadmap

e Big goal “1.0". Properly open-source (expected 2018).
e public primary repository
o all design reviews public
e core team consisting not only of Google employees
e stable build language and APlIs
e On the way there, technical improvements
e remote execution API
e community repositories of Skylark rules

Open-Sourcing

Bazel Roadmap

e Big goal “1.0". Properly open-source (expected 2018).
e public primary repository
o all design reviews public
e core team consisting not only of Google employees
e stable build language and APlIs

e On the way there, technical improvements
e remote execution API
e community repositories of Skylark rules
Bazel more language agnostic tool

Open-Sourcing

Bazel Roadmap

e Big goal “1.0". Properly open-source (expected 2018).
e public primary repository
o all design reviews public
e core team consisting not only of Google employees
e stable build language and APlIs
e On the way there, technical improvements
e remote execution API
e community repositories of Skylark rules

Open-Sourcing

Bazel Roadmap

e Big goal “1.0". Properly open-source (expected 2018).
e public primary repository
o all design reviews public
e core team consisting not only of Google employees
e stable build language and APlIs

e On the way there, technical improvements
e remote execution API
e community repositories of Skylark rules
e good story for remote repositories (including proper caching)

Open-Sourcing

Bazel Roadmap

e Big goal “1.0". Properly open-source (expected 2018).
e public primary repository
o all design reviews public
e core team consisting not only of Google employees
e stable build language and APlIs

e On the way there, technical improvements
e remote execution API
e community repositories of Skylark rules
e good story for remote repositories (including proper caching)
]

Bazel How Bazel Works Open-Sourcing Summary
[e]

(e} [e]
[e]o]e} o [e]
[e]

[e]

Summary

declarative BUILD files
... also supporting your own extensions

all dependencies tracked ~~ correctness
(sandboxes to ensure all /0 is known)

full knowledge enables fast builds
(caching of actions, remote execution, parallelism, ...)

® open-source

Bazel How Bazel Works Open-Sourcing Summary

(e} [e] o [e]
[e]o]e} o o
[e]

[e]

Try Bazel

Try Bazel yourself.

e Homepage https://bazel.build/
Mailing lists
e bazel-discuss@googlegroups.com
e bazel-dev@googlegroups.com

Repository and issue tracker
https://github.com/bazelbuild/bazel

IRC #bazel on irc.freenode.net

Release key fingerprint
71A1 DOEF CFEB 6281 FD04 37C9 3D59 19B4 4845 T7EEO

Thanks for your attention. Questions?

https://bazel.build/
https://github.com/bazelbuild/bazel

	Bazel
	What is Bazel?

	How Bazel Works
	Overview of a bazel build
	Example of a BUILD File
	Evaluation
	The Declarative Language

	Open-Sourcing
	The Story So Far
	Roadmap

	Summary
	Summary
	Getting Bazel

