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, therefore. . .

• aggressive caching

without losing correctness

• declarative style of BUILD files

• separation of concerns
writing code vs choosing correct (cross) compiling strategy

• central maintenance point for build rules
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Overview of a bazel build

What is Bazel? And how does it build?

• load the BUILD files (all that are needed)
• analyze dependencies between targets
• from rules generate action graph
• execute actions (unless already cached)

on subsequent builds, update the graphs
(client-server architecture to keep graph in memory)
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Let’s look at a helloworld example.

• main program helloworld.c

,
depending on a library

• a library with headers (lib/hello.h)

. . . and implementation (lib/hello.c)

• then we can have an empty WORKSPACE file

. . . and the following declarative BUILD files
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#include "lib/hello.h"

int main(int argc, char **argv) {
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return 0;

}
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• main program helloworld.c,
depending on a library

• a library with headers (lib/hello.h)

. . . and implementation (lib/hello.c)

#ifndef HELLO H

#define HELLO H

void greet(char *);

#endif

• then we can have an empty WORKSPACE file

. . . and the following declarative BUILD files
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• main program helloworld.c,
depending on a library

• a library with headers (lib/hello.h)
. . . and implementation (lib/hello.c)

#include "hello.h"

#include <stdio.h>

void greet(char *it) {
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}
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hello.c

WORKSPACE

BUILD

BUILD

• main program helloworld.c,
depending on a library

• a library with headers (lib/hello.h)
. . . and implementation (lib/hello.c)

• then we can have an empty WORKSPACE file
. . . and the following declarative BUILD files

cc binary(

name="helloworld",

srcs=["helloworld.c"],

deps=["//lib:hello"],

)

cc library(

name="hello",

srcs=glob(["*.c"]),

hdrs=glob(["*.h"]),

)
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helloworld.c

lib

hello.h

hello.c

WORKSPACE

BUILD

BUILD

• main program helloworld.c,
depending on a library

• a library with headers (lib/hello.h)
. . . and implementation (lib/hello.c)

• then we can have an empty WORKSPACE file
. . . and the following declarative BUILD files

cc binary(

name="helloworld",

srcs=["helloworld.c"],

deps=["//lib:hello"],

)

cc library(

name="hello",

srcs=glob(["*.c"]),

hdrs=glob(["*.h"]),

)

Note: CC, link options, host/target architecture, etc,
taken care of elsewhere.
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Example cont’d: Dependencies
build //:helloworld

command

Now let’s see what happens if we want to build :helloworld. . .
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We look at the target :helloworld

, in package //, in file BUILD
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We look at the target :helloworld, in package //
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Example cont’d: Dependencies
build //:helloworld//:helloworld//BUILD

command

target

pkg

file system

We look at the target :helloworld, in package //, in file BUILD
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pkg
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Two declared dependencies

, one in a different package
Note: We construct dependency graph over package boundaries!
(no recursive calling)
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Example cont’d: Dependencies
build //:helloworld//:helloworld//BUILD

//lib:hello

helloworld.c

command

target

pkg

file system

Two declared dependencies

. . . and implicit dependency on the C tool chain
(not drawn in this diagram)

, one in a different package
Note: We construct dependency graph over package boundaries!
(no recursive calling)
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helloworld.c

//lib
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BUILD
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target
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Two declared dependencies, one in a different package
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Example cont’d: Dependencies
build //:helloworld//:helloworld//BUILD

//lib:hello

helloworld.c

//lib

lib/

BUILD

glob(["*.c"])

glob(["*.h"])

command

target

pkg

file system

glob

We discover glob expressions

, and read the directory.
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//lib:hello
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//lib
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BUILD

glob(["*.c"])
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We discover glob expressions, and read the directory.
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Example cont’d: Dependencies
build //:helloworld//:helloworld//BUILD

//lib:hello

helloworld.c

//lib

lib/

BUILD

glob(["*.c"])

glob(["*.h"])

hello.c

hello.h

lib/libhello.{a,so}lib/hello.pic.o

helloworldhelloworld.pic.o

command

target

pkg

file system

glob

artefact

The rules tell us, which artifacts to build.
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hello.c

hello.h
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helloworldhelloworld.pic.o

file system

artefact



Bazel How Bazel Works Open-Sourcing Summary

Example cont’d: Dependencies
build //:helloworld//:helloworld//BUILD

//lib:hello

helloworld.c

//lib

lib/

BUILD

glob(["*.c"])

glob(["*.h"])

hello.c

hello.h

lib/libhello.{a,so}lib/hello.pic.o

helloworldhelloworld.pic.o

command

target

pkg

file system

glob

artefact



Bazel How Bazel Works Open-Sourcing Summary

Example cont’d: Adding a File
build //:helloworld//:helloworld//BUILD

//lib:hello

helloworld.c

//lib

lib/

BUILD

glob(["*.c"])

glob(["*.h"])

hello.c

hello.h

lib/libhello.{a,so}lib/hello.pic.o

helloworldhelloworld.pic.o

command

target

pkg

file system

glob

artefact



Bazel How Bazel Works Open-Sourcing Summary

Example cont’d: Adding a File
build //:helloworld//:helloworld//BUILD

//lib:hello

helloworld.c

//lib

lib/

BUILD

glob(["*.c"])

glob(["*.h"])

hello.c

hello.h

lib/libhello.{a,so}lib/hello.pic.o

helloworldhelloworld.pic.o

foo.c

command

target

pkg

file system

glob

artefact



Bazel How Bazel Works Open-Sourcing Summary

Example cont’d: Adding a File
build //:helloworld//:helloworld//BUILD

//lib:hello

helloworld.c

//lib

lib/

BUILD

glob(["*.c"])

glob(["*.h"])

hello.c

hello.h

lib/libhello.{a,so}lib/hello.pic.o

helloworldhelloworld.pic.o

foo.c

command

target

pkg

file system

glob

artefact



Bazel How Bazel Works Open-Sourcing Summary

Example cont’d: Adding a File
build //:helloworld//:helloworld//BUILD

//lib:hello

helloworld.c

//lib

lib/

BUILD

glob(["*.c"])

glob(["*.h"])

hello.c

hello.h

lib/libhello.{a,so}lib/hello.pic.o

helloworldhelloworld.pic.o

foo.c

command

target

pkg

file system

glob

artefact



Bazel How Bazel Works Open-Sourcing Summary

Example cont’d: Adding a File
build //:helloworld//:helloworld//BUILD

//lib:hello

helloworld.c

//lib

lib/

BUILD

glob(["*.c"])

glob(["*.h"])

hello.c

hello.h

lib/libhello.{a,so}lib/hello.pic.o

helloworldhelloworld.pic.o

foo.c

command

target

pkg

file system

glob

artefact



Bazel How Bazel Works Open-Sourcing Summary

Example cont’d: Adding a File
build //:helloworld//:helloworld//BUILD

//lib:hello

helloworld.c

//lib

lib/

BUILD

glob(["*.c"])

glob(["*.h"])

hello.c

hello.h

lib/libhello.{a,so}lib/hello.pic.o

helloworldhelloworld.pic.o

foo.c lib/foo.pic.o

command

target

pkg

file system

glob

artefact



Bazel How Bazel Works Open-Sourcing Summary

Example cont’d: Adding a File
build //:helloworld//:helloworld//BUILD

//lib:hello

helloworld.c

//lib

lib/

BUILD

glob(["*.c"])

glob(["*.h"])

hello.c

hello.h

lib/libhello.{a,so}lib/hello.pic.o

helloworldhelloworld.pic.o

foo.c lib/foo.pic.o

command

target

pkg

file system

glob

artefact



Bazel How Bazel Works Open-Sourcing Summary

Example cont’d: Adding a File
build //:helloworld//:helloworld//BUILD

//lib:hello

helloworld.c

//lib

lib/

BUILD

glob(["*.c"])

glob(["*.h"])

hello.c

hello.h

lib/libhello.{a,so}lib/hello.pic.o

helloworldhelloworld.pic.o

foo.c lib/foo.pic.o

command

target

pkg

file system

glob

artefact



Bazel How Bazel Works Open-Sourcing Summary

Actions

• action do the actual work of building

. . . and hence take the most time

 particularly interesting to avoid unnecessary actions

• dependency graph shows if prerequisites changed
• caching of input/output-relation itself

! requires all inputs/outputs to be known to bazel

 facilitate correct I/O by running actions in “sandboxes”
• bonus: remote execution

⇒ enables shared caches.
(All engineers working on the same code base!)
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• action do the actual work of building
. . . and hence take the most time

 particularly interesting to avoid unnecessary actions
• dependency graph shows if prerequisites changed
• caching of input/output-relation itself

! requires all inputs/outputs to be known to bazel

• so, no .done foo targets,
• and only reading declared inputs

 facilitate correct I/O by running actions in “sandboxes”
• bonus: remote execution

⇒ enables shared caches.
(All engineers working on the same code base!)
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load("//. . . .bzl", "mylang")

• not so simple case: rules
freely specify actions, argument declaration, . . .
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native.genrule(

name = name + " out",
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cmd = "env . . . $(location " + script + ")"

+ ". . . $@ $(SRCS)",

. . . )
native.. . .
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Summary

• declarative BUILD files
. . . also supporting your own extensions

• all dependencies tracked  correctness
(sandboxes to ensure all I/O is known)

• full knowledge enables fast builds
(caching of actions, remote execution, parallelism, . . . )

• open-source
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Try Bazel

Try Bazel yourself.

• Homepage https://bazel.build/

• Mailing lists
• bazel-discuss@googlegroups.com
• bazel-dev@googlegroups.com

• Repository and issue tracker
https://github.com/bazelbuild/bazel

• IRC #bazel on irc.freenode.net

• Release key fingerprint
71A1 D0EF CFEB 6281 FD04 37C9 3D59 19B4 4845 7EE0

Thanks for your attention. Questions?

https://bazel.build/
https://github.com/bazelbuild/bazel
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