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artifacts (libraries, executables, ... ) from sources
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What is Bazel?

e Bazel is a build tool
e core part of a tool
used internally at Google since over a decade
~~ optimized for Google's internal use case

e large code base in a single source tree (=~ 107 files)
e majority of engineers (~ 10*5) actively working

on that single code base.
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What is Bazel? \

e Bazel is a build tool
e core part of a tool
used internally at Google since over a decade
~ optimized for Google's internal use case (large mono-repo)
e open-sourced only in 2015
(in fact, still going on)
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What is Bazel? And what is special about it? \

e optimized for large mono-repos, therefore. . .
e aggressive caching without losing correctness
e declarative style of BUILD files
e separation of concerns
writing code vs choosing correct (cross) compiling strategy
e central maintenance point for build rules
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Overview of a bazel build

What is Bazel? And how does it build? \

load the BUILD files (all that are needed)
analyze dependencies between targets
from rules generate action graph

execute actions (unless already cached)

on subsequent builds, update the graphs
(client-server architecture to keep graph in memory)
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An Example

e main program helloworld.c helloworld.c

#include "lib/hello.h"

int main(int argc, char **argv) {
greet ("world");
return O;

}
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@00

An Example

main program helloworld.c, helloworld.c
depending on a library lib
a library with headers (1ib/hello.h)

| hello.h

#ifndef HELLO_H
#define HELLO_H

void greet(char *);

#tendif
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@00

An Example

e main program helloworld.c, | helloworld.c
depending on a library lib
e a library with headers (1ib/hello.h)
. and implementation (1ib/hello.c)

| hello.h

#include "hello.h" | hello.c
#include <stdio.h>

void greet(char *it) {
printf ("Hello %s!", it);

}
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e main program helloworld.c, | helloworld.c
depending on a library lib
e a library with headers (1ib/hello.h)
. and implementation (1ib/hello.c)

| hello.h
hello.c
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An Example WORKSPACE

L BUILD
e main program helloworld.c, | helloworld.c
depending on a library lib
e a library with headers (1ib/hello.h) BUILD
. and implementation (1ib/hello.c) —
e then we can have an empty WORKSPACE file [ hello.h
. and the following declarative BUILD files "~ hello.c
cc_binary( cc_library(
name="helloworld", name="hello",
srcs=["helloworld.c"], srcs=glob(["*.c"]),
deps=["//1lib:hello"], hdrs=glob(["*.h"]),

) )



How Bazel Works

@00

An Example WORKSPACE

L BUILD
e main program helloworld.c, | helloworld.c
depending on a library lib
e a library with headers (1ib/hello.h) BUILD
. and implementation (1ib/hello.c) —
e then we can have an empty WORKSPACE file [ hello.h
. and the following declarative BUILD files "~ hello.c
cc_binary( cc_library(
name="helloworld", name="hello",
srcs=["helloworld.c"], srcs=glob(["*.c"]),
deps=["//1lib:hello"], hdrs=glob(["*.h"]),
) )

Note: CC, link options, host/target architecture, etc,
taken care of elsewhere.
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Now let's see what happens if we want to build :helloworld. ..

command
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Example cont'd: Dependencies
() ———» [helloworld | ——= [ build /zhelloworid

/Nib:hello

Two declared dependencies

command

. and implicit dependency on the C tool chain

(not drawn in this diagram) [enren ]
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() ———» [helloworld | ——= [ build /zhelloworid

]~ &) [ ]

Two declared dependencies, one in a different package
Note: We construct dependency graph over package boundaries!

mmmmmm d

(no recursive calling) g
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[ #:nefloworld | ——= [ build /helloworld

glob ["*.h"]

-\"M\

BUILD — /Ilb — | //lib:hello

We discover glob expressions

target
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We discover glob expressions, and read the directory.

command

target



How Bazel Works

oeo

Example cont’d' Dependencies

| I/helloworld | — | build //:helloworld

E heIIoworId pic.o heIIoworId

o
—a glob[ " \
//Ilbhello

BUILD — //|Ib —_—

[helloc | ———— libthello.pic.o —~ I|bl||bhe||o.{a,so}

The rules tell us, which artifacts to build.

command

target

artefact
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e so, no .done_foo targets,
e and only reading declared inputs
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e action do the actual work of building
... and hence take the most time
~> particularly interesting to avoid unnecessary actions
e dependency graph shows if prerequisites changed
e caching of input/output-relation itself
I' requires all inputs/outputs to be known to bazel
~~ facilitate correct |/O by running actions in “sandboxes”
e isolated environment
e only declared inputs/tools present
e only declared outputs copied out
e depending on OS, different approaches
(chroot, temp dir, ...)
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e action do the actual work of building
... and hence take the most time
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e dependency graph shows if prerequisites changed
e caching of input/output-relation itself
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Actions

action do the actual work of building

... and hence take the most time

particularly interesting to avoid unnecessary actions
e dependency graph shows if prerequisites changed
e caching of input/output-relation itself

I' requires all inputs/outputs to be known to bazel
facilitate correct |/O by running actions in “sandboxes”
bonus: remote execution

= enables shared caches.

(All engineers working on the same code base!)
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Extending Bazel

e Bazel has built-in rules
e specialized rules with knowledge about certain languages

cc_library, cc_binary, java_library, java_binary, ...

e generic ones, in particular genrule
— just specify a shell command (with $@, $<, ...)
(basically the only rule available in a Makefile)
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Extending Bazel

e Bazel has built-in rules
e but adding specialized rules for every language doesn’t scale
~» need ways to extend BUILD language: Skylark
e Python-like language (familiar syntax)
e but restricted to a simple core
without global state, complicated features, . ..
~ deterministic, hermetic evaluation
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Extending Bazel

e Bazel has built-in rules

e but adding specialized rules for every language doesn’t scale
~» need ways to extend BUILD language: Skylark

e simple case: can compose it from existing rules ~» macros

def mylang(name="", param="default", srcs=[]):

script = str(Label("//rules/mylang:bld.sh"))
native.genrule(

name = name + "_out",

tools = [script],

cmd = "env ... $(location " + script + ")"

+ "... $@ $(SRCS)",
)

native....
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Extending Bazel

Bazel has built-in rules

but adding specialized rules for every language doesn’t scale
need ways to extend BUILD language: Skylark

simple case: can compose it from existing rules ~» macros
all extensions are loaded in BUILD files

load("//....bzl", "mylang")

not so simple case: rules

freely specify actions, argument declaration, ...
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e Big goal “1.0". Properly open-source (expected 2018).
e public primary repository
o all design reviews public
e core team consisting not only of Google employees
e stable build language and APlIs

e On the way there, technical improvements
e remote execution API
e community repositories of Skylark rules
e good story for remote repositories (including proper caching)
]



Bazel How Bazel Works Open-Sourcing Summary
[e]

(e} [e]
[e]o]e} o [e]
[e]

[e]

Summary

declarative BUILD files
... also supporting your own extensions

all dependencies tracked ~~ correctness
(sandboxes to ensure all /0 is known)

full knowledge enables fast builds
(caching of actions, remote execution, parallelism, ... )

® open-source
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Try Bazel

Try Bazel yourself.

e Homepage https://bazel.build/
Mailing lists
e bazel-discuss@googlegroups.com
e bazel-dev@googlegroups.com

Repository and issue tracker
https://github.com/bazelbuild/bazel

IRC #bazel on irc.freenode.net

Release key fingerprint
71A1 DOEF CFEB 6281 FD04 37C9 3D59 19B4 4845 T7EEO

Thanks for your attention. Questions?


https://bazel.build/
https://github.com/bazelbuild/bazel
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