
Bazel How Bazel Works Open-Sourcing Summary

Bazel
{fast, correct} – choose two

Klaus Aehlig

February 4–5, 2017

Bazel How Bazel Works Open-Sourcing Summary

Bazel

What is Bazel?

• Bazel is a build tool
• core part of a tool

used internally at Google since over a decade
 optimized for Google’s internal use case

(large mono-repo)

• open-sourced only in 2015

(in fact, still going on)

Bazel How Bazel Works Open-Sourcing Summary

Bazel

What is Bazel?

• Bazel is a build tool

• core part of a tool
used internally at Google since over a decade

 optimized for Google’s internal use case

(large mono-repo)

• open-sourced only in 2015

(in fact, still going on)

Bazel How Bazel Works Open-Sourcing Summary

Bazel

What is Bazel?

• Bazel is a build tool
like make, etc, it organises compiling/creating
artifacts (libraries, executables, . . .) from sources

• core part of a tool
used internally at Google since over a decade

 optimized for Google’s internal use case

(large mono-repo)

• open-sourced only in 2015

(in fact, still going on)

Bazel How Bazel Works Open-Sourcing Summary

Bazel

What is Bazel?

• Bazel is a build tool

• core part of a tool
used internally at Google since over a decade

 optimized for Google’s internal use case

(large mono-repo)

• open-sourced only in 2015

(in fact, still going on)

Bazel How Bazel Works Open-Sourcing Summary

Bazel

What is Bazel?

• Bazel is a build tool
• core part of a tool

used internally at Google since over a decade

 optimized for Google’s internal use case

(large mono-repo)

• open-sourced only in 2015

(in fact, still going on)

Bazel How Bazel Works Open-Sourcing Summary

Bazel

What is Bazel?

• Bazel is a build tool
• core part of a tool

used internally at Google since over a decade
 optimized for Google’s internal use case

(large mono-repo)
• open-sourced only in 2015

(in fact, still going on)

Bazel How Bazel Works Open-Sourcing Summary

Bazel

What is Bazel?

• Bazel is a build tool
• core part of a tool

used internally at Google since over a decade
 optimized for Google’s internal use case

(large mono-repo)

• large code base in a single source tree (≈ 107 files)

• majority of engineers (≈ 104.5) actively working
on that single code base.

• open-sourced only in 2015

(in fact, still going on)

Bazel How Bazel Works Open-Sourcing Summary

Bazel

What is Bazel?

• Bazel is a build tool
• core part of a tool

used internally at Google since over a decade
 optimized for Google’s internal use case

(large mono-repo)

• large code base in a single source tree (≈ 107 files)
• majority of engineers (≈ 104.5) actively working

on that single code base.

• open-sourced only in 2015

(in fact, still going on)

Bazel How Bazel Works Open-Sourcing Summary

Bazel

What is Bazel?

• Bazel is a build tool
• core part of a tool

used internally at Google since over a decade
 optimized for Google’s internal use case (large mono-repo)

• open-sourced only in 2015

(in fact, still going on)

Bazel How Bazel Works Open-Sourcing Summary

Bazel

What is Bazel?

• Bazel is a build tool
• core part of a tool

used internally at Google since over a decade
 optimized for Google’s internal use case (large mono-repo)
• open-sourced only in 2015
(in fact, still going on)

Bazel How Bazel Works Open-Sourcing Summary

What is Bazel Good for?

What is Bazel? And what is special about it?

• optimized for large mono-repos

, therefore. . .

• aggressive caching

without losing correctness

• declarative style of BUILD files

• separation of concerns
writing code vs choosing correct (cross) compiling strategy

• central maintenance point for build rules

Bazel How Bazel Works Open-Sourcing Summary

What is Bazel Good for?

What is Bazel? And what is special about it?

• optimized for large mono-repos, therefore. . .

• aggressive caching

without losing correctness

• declarative style of BUILD files

• separation of concerns
writing code vs choosing correct (cross) compiling strategy

• central maintenance point for build rules

Bazel How Bazel Works Open-Sourcing Summary

What is Bazel Good for?

What is Bazel? And what is special about it?

• optimized for large mono-repos, therefore. . .
• aggressive caching

without losing correctness
• declarative style of BUILD files

• separation of concerns
writing code vs choosing correct (cross) compiling strategy

• central maintenance point for build rules

Bazel How Bazel Works Open-Sourcing Summary

What is Bazel Good for?

What is Bazel? And what is special about it?

• optimized for large mono-repos, therefore. . .
• aggressive caching without losing correctness
(i.e., all artifacts as if freshly built from source)

• declarative style of BUILD files

• separation of concerns
writing code vs choosing correct (cross) compiling strategy

• central maintenance point for build rules

Bazel How Bazel Works Open-Sourcing Summary

What is Bazel Good for?

What is Bazel? And what is special about it?

• optimized for large mono-repos, therefore. . .
• aggressive caching without losing correctness

• declarative style of BUILD files

• separation of concerns
writing code vs choosing correct (cross) compiling strategy

• central maintenance point for build rules

Bazel How Bazel Works Open-Sourcing Summary

What is Bazel Good for?

What is Bazel? And what is special about it?

• optimized for large mono-repos, therefore. . .
• aggressive caching without losing correctness
• declarative style of BUILD files

• separation of concerns
writing code vs choosing correct (cross) compiling strategy

• central maintenance point for build rules

Bazel How Bazel Works Open-Sourcing Summary

What is Bazel Good for?

What is Bazel? And what is special about it?

• optimized for large mono-repos, therefore. . .
• aggressive caching without losing correctness
• declarative style of BUILD files

• separation of concerns
writing code vs choosing correct (cross) compiling strategy

• central maintenance point for build rules

Bazel How Bazel Works Open-Sourcing Summary

What is Bazel Good for?

What is Bazel? And what is special about it?

• optimized for large mono-repos, therefore. . .
• aggressive caching without losing correctness
• declarative style of BUILD files

• separation of concerns
writing code vs choosing correct (cross) compiling strategy

• central maintenance point for build rules

Bazel How Bazel Works Open-Sourcing Summary

What is Bazel Good for?

What is Bazel? And what is special about it?

• optimized for large mono-repos, therefore. . .
• aggressive caching without losing correctness
• declarative style of BUILD files

• separation of concerns
writing code vs choosing correct (cross) compiling strategy

• central maintenance point for build rules

Bazel How Bazel Works Open-Sourcing Summary

Overview of a bazel build

What is Bazel? And how does it build?

• load the BUILD files (all that are needed)
• analyze dependencies between targets
• from rules generate action graph
• execute actions (unless already cached)

on subsequent builds, update the graphs
(client-server architecture to keep graph in memory)

Bazel How Bazel Works Open-Sourcing Summary

Overview of a bazel build

What is Bazel? And how does it build?

• load the BUILD files (all that are needed)

• analyze dependencies between targets
• from rules generate action graph
• execute actions (unless already cached)

on subsequent builds, update the graphs
(client-server architecture to keep graph in memory)

Bazel How Bazel Works Open-Sourcing Summary

Overview of a bazel build

What is Bazel? And how does it build?

• load the BUILD files (all that are needed)
• analyze dependencies between targets

• from rules generate action graph
• execute actions (unless already cached)

on subsequent builds, update the graphs
(client-server architecture to keep graph in memory)

Bazel How Bazel Works Open-Sourcing Summary

Overview of a bazel build

What is Bazel? And how does it build?

• load the BUILD files (all that are needed)
• analyze dependencies between targets
• from rules generate action graph

• execute actions (unless already cached)

on subsequent builds, update the graphs
(client-server architecture to keep graph in memory)

Bazel How Bazel Works Open-Sourcing Summary

Overview of a bazel build

What is Bazel? And how does it build?

• load the BUILD files (all that are needed)
• analyze dependencies between targets
• from rules generate action graph
• execute actions (unless already cached)

on subsequent builds, update the graphs
(client-server architecture to keep graph in memory)

Bazel How Bazel Works Open-Sourcing Summary

Overview of a bazel build

What is Bazel? And how does it build?

• load the BUILD files (all that are needed)
• analyze dependencies between targets
• from rules generate action graph
• execute actions (unless already cached)

on subsequent builds, update the graphs
(client-server architecture to keep graph in memory)

Bazel How Bazel Works Open-Sourcing Summary

An Example

Let’s look at a helloworld example.

• main program helloworld.c

,
depending on a library

• a library with headers (lib/hello.h)

. . . and implementation (lib/hello.c)

• then we can have an empty WORKSPACE file

. . . and the following declarative BUILD files

Bazel How Bazel Works Open-Sourcing Summary

An Example

helloworld.c• main program helloworld.c

,
depending on a library

• a library with headers (lib/hello.h)

. . . and implementation (lib/hello.c)

• then we can have an empty WORKSPACE file

. . . and the following declarative BUILD files

Bazel How Bazel Works Open-Sourcing Summary

An Example

helloworld.c• main program helloworld.c

,
depending on a library

#include "lib/hello.h"

int main(int argc, char **argv) {
greet("world");

return 0;

}

• a library with headers (lib/hello.h)

. . . and implementation (lib/hello.c)

• then we can have an empty WORKSPACE file

. . . and the following declarative BUILD files

Bazel How Bazel Works Open-Sourcing Summary

An Example

helloworld.c• main program helloworld.c,
depending on a library

• a library with headers (lib/hello.h)

. . . and implementation (lib/hello.c)

• then we can have an empty WORKSPACE file

. . . and the following declarative BUILD files

Bazel How Bazel Works Open-Sourcing Summary

An Example

helloworld.c

lib

hello.h

• main program helloworld.c,
depending on a library

• a library with headers (lib/hello.h)

. . . and implementation (lib/hello.c)

#ifndef HELLO H

#define HELLO H

void greet(char *);

#endif

• then we can have an empty WORKSPACE file

. . . and the following declarative BUILD files

Bazel How Bazel Works Open-Sourcing Summary

An Example

helloworld.c

lib

hello.h

hello.c

• main program helloworld.c,
depending on a library

• a library with headers (lib/hello.h)
. . . and implementation (lib/hello.c)

#include "hello.h"

#include <stdio.h>

void greet(char *it) {
printf("Hello %s!", it);

}

• then we can have an empty WORKSPACE file

. . . and the following declarative BUILD files

Bazel How Bazel Works Open-Sourcing Summary

An Example

helloworld.c

lib

hello.h

hello.c

• main program helloworld.c,
depending on a library

• a library with headers (lib/hello.h)
. . . and implementation (lib/hello.c)

• then we can have an empty WORKSPACE file

. . . and the following declarative BUILD files

Bazel How Bazel Works Open-Sourcing Summary

An Example

helloworld.c

lib

hello.h

hello.c

WORKSPACE

• main program helloworld.c,
depending on a library

• a library with headers (lib/hello.h)
. . . and implementation (lib/hello.c)

• then we can have an empty WORKSPACE file

. . . and the following declarative BUILD files

Bazel How Bazel Works Open-Sourcing Summary

An Example

helloworld.c

lib

hello.h

hello.c

WORKSPACE

BUILD

BUILD

• main program helloworld.c,
depending on a library

• a library with headers (lib/hello.h)
. . . and implementation (lib/hello.c)

• then we can have an empty WORKSPACE file
. . . and the following declarative BUILD files

cc binary(

name="helloworld",

srcs=["helloworld.c"],

deps=["//lib:hello"],

)

cc library(

name="hello",

srcs=glob(["*.c"]),

hdrs=glob(["*.h"]),

)

Bazel How Bazel Works Open-Sourcing Summary

An Example

helloworld.c

lib

hello.h

hello.c

WORKSPACE

BUILD

BUILD

• main program helloworld.c,
depending on a library

• a library with headers (lib/hello.h)
. . . and implementation (lib/hello.c)

• then we can have an empty WORKSPACE file
. . . and the following declarative BUILD files

cc binary(

name="helloworld",

srcs=["helloworld.c"],

deps=["//lib:hello"],

)

cc library(

name="hello",

srcs=glob(["*.c"]),

hdrs=glob(["*.h"]),

)

Note: CC, link options, host/target architecture, etc,
taken care of elsewhere.

Bazel How Bazel Works Open-Sourcing Summary

Example cont’d: Dependencies
build //:helloworld

command

Now let’s see what happens if we want to build :helloworld. . .

Bazel How Bazel Works Open-Sourcing Summary

Example cont’d: Dependencies
build //:helloworld//:helloworld

command

target

We look at the target :helloworld

, in package //, in file BUILD

Bazel How Bazel Works Open-Sourcing Summary

Example cont’d: Dependencies
build //:helloworld//:helloworld//

command

target

pkg

We look at the target :helloworld, in package //

, in file BUILD

Bazel How Bazel Works Open-Sourcing Summary

Example cont’d: Dependencies
build //:helloworld//:helloworld//BUILD

command

target

pkg

file system

We look at the target :helloworld, in package //, in file BUILD

Bazel How Bazel Works Open-Sourcing Summary

Example cont’d: Dependencies
build //:helloworld//:helloworld//BUILD

//lib:hello

helloworld.c

command

target

pkg

file system

Two declared dependencies

, one in a different package
Note: We construct dependency graph over package boundaries!
(no recursive calling)

Bazel How Bazel Works Open-Sourcing Summary

Example cont’d: Dependencies
build //:helloworld//:helloworld//BUILD

//lib:hello

helloworld.c

command

target

pkg

file system

Two declared dependencies

. . . and implicit dependency on the C tool chain
(not drawn in this diagram)

, one in a different package
Note: We construct dependency graph over package boundaries!
(no recursive calling)

Bazel How Bazel Works Open-Sourcing Summary

Example cont’d: Dependencies
build //:helloworld//:helloworld//BUILD

//lib:hello

helloworld.c

//lib

lib/

BUILD

command

target

pkg

file system

Two declared dependencies, one in a different package
Note: We construct dependency graph over package boundaries!
(no recursive calling)

Bazel How Bazel Works Open-Sourcing Summary

Example cont’d: Dependencies
build //:helloworld//:helloworld//BUILD

//lib:hello

helloworld.c

//lib

lib/

BUILD

glob(["*.c"])

glob(["*.h"])

command

target

pkg

file system

glob

We discover glob expressions

, and read the directory.

Bazel How Bazel Works Open-Sourcing Summary

Example cont’d: Dependencies
build //:helloworld//:helloworld//BUILD

//lib:hello

helloworld.c

//lib

lib/

BUILD

glob(["*.c"])

glob(["*.h"])

hello.c

hello.h

command

target

pkg

file system

glob

We discover glob expressions, and read the directory.

Bazel How Bazel Works Open-Sourcing Summary

Example cont’d: Dependencies
build //:helloworld//:helloworld//BUILD

//lib:hello

helloworld.c

//lib

lib/

BUILD

glob(["*.c"])

glob(["*.h"])

hello.c

hello.h

lib/libhello.{a,so}lib/hello.pic.o

helloworldhelloworld.pic.o

command

target

pkg

file system

glob

artefact

The rules tell us, which artifacts to build.

Bazel How Bazel Works Open-Sourcing Summary

Example cont’d: Dependencies
BUILD

helloworld.c

lib/

BUILD

hello.c

hello.h

lib/libhello.{a,so}lib/hello.pic.o

helloworldhelloworld.pic.o

file system

artefact

Bazel How Bazel Works Open-Sourcing Summary

Example cont’d: Dependencies
build //:helloworld//:helloworld//BUILD

//lib:hello

helloworld.c

//lib

lib/

BUILD

glob(["*.c"])

glob(["*.h"])

hello.c

hello.h

lib/libhello.{a,so}lib/hello.pic.o

helloworldhelloworld.pic.o

command

target

pkg

file system

glob

artefact

Bazel How Bazel Works Open-Sourcing Summary

Example cont’d: Adding a File
build //:helloworld//:helloworld//BUILD

//lib:hello

helloworld.c

//lib

lib/

BUILD

glob(["*.c"])

glob(["*.h"])

hello.c

hello.h

lib/libhello.{a,so}lib/hello.pic.o

helloworldhelloworld.pic.o

command

target

pkg

file system

glob

artefact

Bazel How Bazel Works Open-Sourcing Summary

Example cont’d: Adding a File
build //:helloworld//:helloworld//BUILD

//lib:hello

helloworld.c

//lib

lib/

BUILD

glob(["*.c"])

glob(["*.h"])

hello.c

hello.h

lib/libhello.{a,so}lib/hello.pic.o

helloworldhelloworld.pic.o

foo.c

command

target

pkg

file system

glob

artefact

Bazel How Bazel Works Open-Sourcing Summary

Example cont’d: Adding a File
build //:helloworld//:helloworld//BUILD

//lib:hello

helloworld.c

//lib

lib/

BUILD

glob(["*.c"])

glob(["*.h"])

hello.c

hello.h

lib/libhello.{a,so}lib/hello.pic.o

helloworldhelloworld.pic.o

foo.c

command

target

pkg

file system

glob

artefact

Bazel How Bazel Works Open-Sourcing Summary

Example cont’d: Adding a File
build //:helloworld//:helloworld//BUILD

//lib:hello

helloworld.c

//lib

lib/

BUILD

glob(["*.c"])

glob(["*.h"])

hello.c

hello.h

lib/libhello.{a,so}lib/hello.pic.o

helloworldhelloworld.pic.o

foo.c

command

target

pkg

file system

glob

artefact

Bazel How Bazel Works Open-Sourcing Summary

Example cont’d: Adding a File
build //:helloworld//:helloworld//BUILD

//lib:hello

helloworld.c

//lib

lib/

BUILD

glob(["*.c"])

glob(["*.h"])

hello.c

hello.h

lib/libhello.{a,so}lib/hello.pic.o

helloworldhelloworld.pic.o

foo.c

command

target

pkg

file system

glob

artefact

Bazel How Bazel Works Open-Sourcing Summary

Example cont’d: Adding a File
build //:helloworld//:helloworld//BUILD

//lib:hello

helloworld.c

//lib

lib/

BUILD

glob(["*.c"])

glob(["*.h"])

hello.c

hello.h

lib/libhello.{a,so}lib/hello.pic.o

helloworldhelloworld.pic.o

foo.c lib/foo.pic.o

command

target

pkg

file system

glob

artefact

Bazel How Bazel Works Open-Sourcing Summary

Example cont’d: Adding a File
build //:helloworld//:helloworld//BUILD

//lib:hello

helloworld.c

//lib

lib/

BUILD

glob(["*.c"])

glob(["*.h"])

hello.c

hello.h

lib/libhello.{a,so}lib/hello.pic.o

helloworldhelloworld.pic.o

foo.c lib/foo.pic.o

command

target

pkg

file system

glob

artefact

Bazel How Bazel Works Open-Sourcing Summary

Example cont’d: Adding a File
build //:helloworld//:helloworld//BUILD

//lib:hello

helloworld.c

//lib

lib/

BUILD

glob(["*.c"])

glob(["*.h"])

hello.c

hello.h

lib/libhello.{a,so}lib/hello.pic.o

helloworldhelloworld.pic.o

foo.c lib/foo.pic.o

command

target

pkg

file system

glob

artefact

Bazel How Bazel Works Open-Sourcing Summary

Actions

• action do the actual work of building

. . . and hence take the most time

 particularly interesting to avoid unnecessary actions

• dependency graph shows if prerequisites changed
• caching of input/output-relation itself

! requires all inputs/outputs to be known to bazel

 facilitate correct I/O by running actions in “sandboxes”
• bonus: remote execution

⇒ enables shared caches.
(All engineers working on the same code base!)

Bazel How Bazel Works Open-Sourcing Summary

Actions
• action do the actual work of building

. . . and hence take the most time
 particularly interesting to avoid unnecessary actions

• dependency graph shows if prerequisites changed
• caching of input/output-relation itself

! requires all inputs/outputs to be known to bazel

 facilitate correct I/O by running actions in “sandboxes”
• bonus: remote execution

⇒ enables shared caches.
(All engineers working on the same code base!)

Bazel How Bazel Works Open-Sourcing Summary

Actions
• action do the actual work of building
. . . and hence take the most time

 particularly interesting to avoid unnecessary actions

• dependency graph shows if prerequisites changed
• caching of input/output-relation itself

! requires all inputs/outputs to be known to bazel

 facilitate correct I/O by running actions in “sandboxes”
• bonus: remote execution

⇒ enables shared caches.
(All engineers working on the same code base!)

Bazel How Bazel Works Open-Sourcing Summary

Actions
• action do the actual work of building
. . . and hence take the most time

 particularly interesting to avoid unnecessary actions

• dependency graph shows if prerequisites changed
• caching of input/output-relation itself

! requires all inputs/outputs to be known to bazel

 facilitate correct I/O by running actions in “sandboxes”
• bonus: remote execution

⇒ enables shared caches.
(All engineers working on the same code base!)

Bazel How Bazel Works Open-Sourcing Summary

Actions
• action do the actual work of building
. . . and hence take the most time

 particularly interesting to avoid unnecessary actions
• dependency graph shows if prerequisites changed

• caching of input/output-relation itself

! requires all inputs/outputs to be known to bazel

 facilitate correct I/O by running actions in “sandboxes”
• bonus: remote execution

⇒ enables shared caches.
(All engineers working on the same code base!)

Bazel How Bazel Works Open-Sourcing Summary

Actions
• action do the actual work of building
. . . and hence take the most time

 particularly interesting to avoid unnecessary actions
• dependency graph shows if prerequisites changed
• caching of input/output-relation itself

! requires all inputs/outputs to be known to bazel

 facilitate correct I/O by running actions in “sandboxes”
• bonus: remote execution

⇒ enables shared caches.
(All engineers working on the same code base!)

Bazel How Bazel Works Open-Sourcing Summary

Actions
• action do the actual work of building
. . . and hence take the most time

 particularly interesting to avoid unnecessary actions
• dependency graph shows if prerequisites changed
• caching of input/output-relation itself

! requires all inputs/outputs to be known to bazel

 facilitate correct I/O by running actions in “sandboxes”
• bonus: remote execution

⇒ enables shared caches.
(All engineers working on the same code base!)

Bazel How Bazel Works Open-Sourcing Summary

Actions
• action do the actual work of building
. . . and hence take the most time

 particularly interesting to avoid unnecessary actions
• dependency graph shows if prerequisites changed
• caching of input/output-relation itself

! requires all inputs/outputs to be known to bazel

• so, no .done foo targets,
• and only reading declared inputs

 facilitate correct I/O by running actions in “sandboxes”
• bonus: remote execution

⇒ enables shared caches.
(All engineers working on the same code base!)

Bazel How Bazel Works Open-Sourcing Summary

Actions
• action do the actual work of building
. . . and hence take the most time

 particularly interesting to avoid unnecessary actions
• dependency graph shows if prerequisites changed
• caching of input/output-relation itself

! requires all inputs/outputs to be known to bazel

 facilitate correct I/O by running actions in “sandboxes”
• bonus: remote execution

⇒ enables shared caches.
(All engineers working on the same code base!)

Bazel How Bazel Works Open-Sourcing Summary

Actions
• action do the actual work of building
. . . and hence take the most time

 particularly interesting to avoid unnecessary actions
• dependency graph shows if prerequisites changed
• caching of input/output-relation itself

! requires all inputs/outputs to be known to bazel

 facilitate correct I/O by running actions in “sandboxes”

• bonus: remote execution

⇒ enables shared caches.
(All engineers working on the same code base!)

Bazel How Bazel Works Open-Sourcing Summary

Actions
• action do the actual work of building
. . . and hence take the most time

 particularly interesting to avoid unnecessary actions
• dependency graph shows if prerequisites changed
• caching of input/output-relation itself

! requires all inputs/outputs to be known to bazel

 facilitate correct I/O by running actions in “sandboxes”
• isolated environment

• only declared inputs/tools present
• only declared outputs copied out

• depending on OS, different approaches
(chroot, temp dir, . . .)

• bonus: remote execution

⇒ enables shared caches.
(All engineers working on the same code base!)

Bazel How Bazel Works Open-Sourcing Summary

Actions
• action do the actual work of building
. . . and hence take the most time

 particularly interesting to avoid unnecessary actions
• dependency graph shows if prerequisites changed
• caching of input/output-relation itself

! requires all inputs/outputs to be known to bazel

 facilitate correct I/O by running actions in “sandboxes”
• isolated environment

• only declared inputs/tools present
• only declared outputs copied out

• depending on OS, different approaches
(chroot, temp dir, . . .)

• bonus: remote execution

⇒ enables shared caches.
(All engineers working on the same code base!)

Bazel How Bazel Works Open-Sourcing Summary

Actions
• action do the actual work of building
. . . and hence take the most time

 particularly interesting to avoid unnecessary actions
• dependency graph shows if prerequisites changed
• caching of input/output-relation itself

! requires all inputs/outputs to be known to bazel

 facilitate correct I/O by running actions in “sandboxes”

• bonus: remote execution

⇒ enables shared caches.
(All engineers working on the same code base!)

Bazel How Bazel Works Open-Sourcing Summary

Actions
• action do the actual work of building
. . . and hence take the most time

 particularly interesting to avoid unnecessary actions
• dependency graph shows if prerequisites changed
• caching of input/output-relation itself

! requires all inputs/outputs to be known to bazel

 facilitate correct I/O by running actions in “sandboxes”
• bonus: remote execution

⇒ enables shared caches.
(All engineers working on the same code base!)

Bazel How Bazel Works Open-Sourcing Summary

Actions
• action do the actual work of building
. . . and hence take the most time

 particularly interesting to avoid unnecessary actions
• dependency graph shows if prerequisites changed
• caching of input/output-relation itself

! requires all inputs/outputs to be known to bazel

 facilitate correct I/O by running actions in “sandboxes”
• bonus: remote execution
⇒ enables shared caches.
(All engineers working on the same code base!)

Bazel How Bazel Works Open-Sourcing Summary

Extending Bazel

• Bazel has built-in rules
• but adding specialized rules for every language doesn’t scale
 need ways to extend BUILD language

: Skylark

• simple case: can compose it from existing rules

 macros

• all extensions are loaded in BUILD files
load("//. . . .bzl", "mylang")

• not so simple case: rules
freely specify actions, argument declaration, . . .

Bazel How Bazel Works Open-Sourcing Summary

Extending Bazel
• Bazel has built-in rules

• but adding specialized rules for every language doesn’t scale
 need ways to extend BUILD language

: Skylark

• simple case: can compose it from existing rules

 macros

• all extensions are loaded in BUILD files
load("//. . . .bzl", "mylang")

• not so simple case: rules
freely specify actions, argument declaration, . . .

Bazel How Bazel Works Open-Sourcing Summary

Extending Bazel
• Bazel has built-in rules

• specialized rules with knowledge about certain languages
cc library, cc binary, java library, java binary, . . .

• generic ones, in particular genrule

→ just specify a shell command (with $@, $<, . . .)
(basically the only rule available in a Makefile)

• but adding specialized rules for every language doesn’t scale
 need ways to extend BUILD language

: Skylark

• simple case: can compose it from existing rules

 macros

• all extensions are loaded in BUILD files
load("//. . . .bzl", "mylang")

• not so simple case: rules
freely specify actions, argument declaration, . . .

Bazel How Bazel Works Open-Sourcing Summary

Extending Bazel
• Bazel has built-in rules

• specialized rules with knowledge about certain languages
cc library, cc binary, java library, java binary, . . .

• generic ones, in particular genrule

→ just specify a shell command (with $@, $<, . . .)
(basically the only rule available in a Makefile)

• but adding specialized rules for every language doesn’t scale
 need ways to extend BUILD language

: Skylark

• simple case: can compose it from existing rules

 macros

• all extensions are loaded in BUILD files
load("//. . . .bzl", "mylang")

• not so simple case: rules
freely specify actions, argument declaration, . . .

Bazel How Bazel Works Open-Sourcing Summary

Extending Bazel
• Bazel has built-in rules

• specialized rules with knowledge about certain languages
cc library, cc binary, java library, java binary, . . .

• generic ones, in particular genrule
→ just specify a shell command (with $@, $<, . . .)

(basically the only rule available in a Makefile)

• but adding specialized rules for every language doesn’t scale
 need ways to extend BUILD language

: Skylark

• simple case: can compose it from existing rules

 macros

• all extensions are loaded in BUILD files
load("//. . . .bzl", "mylang")

• not so simple case: rules
freely specify actions, argument declaration, . . .

Bazel How Bazel Works Open-Sourcing Summary

Extending Bazel
• Bazel has built-in rules

• specialized rules with knowledge about certain languages
cc library, cc binary, java library, java binary, . . .

• generic ones, in particular genrule
→ just specify a shell command (with $@, $<, . . .)
(basically the only rule available in a Makefile)

• but adding specialized rules for every language doesn’t scale
 need ways to extend BUILD language

: Skylark

• simple case: can compose it from existing rules

 macros

• all extensions are loaded in BUILD files
load("//. . . .bzl", "mylang")

• not so simple case: rules
freely specify actions, argument declaration, . . .

Bazel How Bazel Works Open-Sourcing Summary

Extending Bazel
• Bazel has built-in rules

• but adding specialized rules for every language doesn’t scale
 need ways to extend BUILD language

: Skylark

• simple case: can compose it from existing rules

 macros

• all extensions are loaded in BUILD files
load("//. . . .bzl", "mylang")

• not so simple case: rules
freely specify actions, argument declaration, . . .

Bazel How Bazel Works Open-Sourcing Summary

Extending Bazel
• Bazel has built-in rules
• but adding specialized rules for every language doesn’t scale

 need ways to extend BUILD language

: Skylark

• simple case: can compose it from existing rules

 macros

• all extensions are loaded in BUILD files
load("//. . . .bzl", "mylang")

• not so simple case: rules
freely specify actions, argument declaration, . . .

Bazel How Bazel Works Open-Sourcing Summary

Extending Bazel
• Bazel has built-in rules
• but adding specialized rules for every language doesn’t scale
 need ways to extend BUILD language

: Skylark
• simple case: can compose it from existing rules

 macros

• all extensions are loaded in BUILD files
load("//. . . .bzl", "mylang")

• not so simple case: rules
freely specify actions, argument declaration, . . .

Bazel How Bazel Works Open-Sourcing Summary

Extending Bazel
• Bazel has built-in rules
• but adding specialized rules for every language doesn’t scale
 need ways to extend BUILD language: Skylark

• simple case: can compose it from existing rules

 macros

• all extensions are loaded in BUILD files
load("//. . . .bzl", "mylang")

• not so simple case: rules
freely specify actions, argument declaration, . . .

Bazel How Bazel Works Open-Sourcing Summary

Extending Bazel
• Bazel has built-in rules
• but adding specialized rules for every language doesn’t scale
 need ways to extend BUILD language: Skylark

• Python-like language (familiar syntax)

• but restricted to a simple core
without global state, complicated features, . . .

 deterministic, hermetic evaluation

• simple case: can compose it from existing rules

 macros

• all extensions are loaded in BUILD files
load("//. . . .bzl", "mylang")

• not so simple case: rules
freely specify actions, argument declaration, . . .

Bazel How Bazel Works Open-Sourcing Summary

Extending Bazel
• Bazel has built-in rules
• but adding specialized rules for every language doesn’t scale
 need ways to extend BUILD language: Skylark

• Python-like language (familiar syntax)
• but restricted to a simple core

without global state, complicated features, . . .

 deterministic, hermetic evaluation

• simple case: can compose it from existing rules

 macros

• all extensions are loaded in BUILD files
load("//. . . .bzl", "mylang")

• not so simple case: rules
freely specify actions, argument declaration, . . .

Bazel How Bazel Works Open-Sourcing Summary

Extending Bazel
• Bazel has built-in rules
• but adding specialized rules for every language doesn’t scale
 need ways to extend BUILD language: Skylark

• Python-like language (familiar syntax)
• but restricted to a simple core

without global state, complicated features, . . .
 deterministic, hermetic evaluation

• simple case: can compose it from existing rules

 macros

• all extensions are loaded in BUILD files
load("//. . . .bzl", "mylang")

• not so simple case: rules
freely specify actions, argument declaration, . . .

Bazel How Bazel Works Open-Sourcing Summary

Extending Bazel
• Bazel has built-in rules
• but adding specialized rules for every language doesn’t scale
 need ways to extend BUILD language: Skylark

• simple case: can compose it from existing rules

 macros

• all extensions are loaded in BUILD files
load("//. . . .bzl", "mylang")

• not so simple case: rules
freely specify actions, argument declaration, . . .

Bazel How Bazel Works Open-Sourcing Summary

Extending Bazel
• Bazel has built-in rules
• but adding specialized rules for every language doesn’t scale
 need ways to extend BUILD language: Skylark
• simple case: can compose it from existing rules

 macros
• all extensions are loaded in BUILD files
load("//. . . .bzl", "mylang")

• not so simple case: rules
freely specify actions, argument declaration, . . .

Bazel How Bazel Works Open-Sourcing Summary

Extending Bazel
• Bazel has built-in rules
• but adding specialized rules for every language doesn’t scale
 need ways to extend BUILD language: Skylark
• simple case: can compose it from existing rules

 macros

“that sh-script with these params; always create 5 targets . . . ”

• all extensions are loaded in BUILD files
load("//. . . .bzl", "mylang")

• not so simple case: rules
freely specify actions, argument declaration, . . .

Bazel How Bazel Works Open-Sourcing Summary

Extending Bazel
• Bazel has built-in rules
• but adding specialized rules for every language doesn’t scale
 need ways to extend BUILD language: Skylark
• simple case: can compose it from existing rules macros

• all extensions are loaded in BUILD files
load("//. . . .bzl", "mylang")

• not so simple case: rules
freely specify actions, argument declaration, . . .

Bazel How Bazel Works Open-Sourcing Summary

Extending Bazel
• Bazel has built-in rules
• but adding specialized rules for every language doesn’t scale
 need ways to extend BUILD language: Skylark
• simple case: can compose it from existing rules macros

def mylang(name="", param="default", srcs=[]):

script = str(Label("//rules/mylang:bld.sh"))

native.genrule(

name = name + " out",

tools = [script],

cmd = "env . . . $(location " + script + ")"

+ ". . . $@ $(SRCS)",

. . .)
native.. . .

• all extensions are loaded in BUILD files
load("//. . . .bzl", "mylang")

• not so simple case: rules
freely specify actions, argument declaration, . . .

Bazel How Bazel Works Open-Sourcing Summary

Extending Bazel
• Bazel has built-in rules
• but adding specialized rules for every language doesn’t scale
 need ways to extend BUILD language: Skylark
• simple case: can compose it from existing rules macros

• all extensions are loaded in BUILD files
load("//. . . .bzl", "mylang")

• not so simple case: rules
freely specify actions, argument declaration, . . .

Bazel How Bazel Works Open-Sourcing Summary

Extending Bazel
• Bazel has built-in rules
• but adding specialized rules for every language doesn’t scale
 need ways to extend BUILD language: Skylark
• simple case: can compose it from existing rules macros
• all extensions are loaded in BUILD files
load("//. . . .bzl", "mylang")

• not so simple case: rules
freely specify actions, argument declaration, . . .

Bazel How Bazel Works Open-Sourcing Summary

Extending Bazel
• Bazel has built-in rules
• but adding specialized rules for every language doesn’t scale
 need ways to extend BUILD language: Skylark
• simple case: can compose it from existing rules macros
• all extensions are loaded in BUILD files
load("//. . . .bzl", "mylang")

• not so simple case: rules
freely specify actions, argument declaration, . . .

Bazel How Bazel Works Open-Sourcing Summary

The Task of Open-Sourcing Bazel

Bazel became open-source only after years of internal use
. . . on a single repository. (large, but just one)

• lot of dependencies, including Google-specific ones
• focus on the “Google languages” (and that built in)
• no stable interfaces
• hard-coded paths everywhere
• . . .

Bazel How Bazel Works Open-Sourcing Summary

The Task of Open-Sourcing Bazel

Bazel became open-source only after years of internal use

. . . on a single repository. (large, but just one)

• lot of dependencies, including Google-specific ones
• focus on the “Google languages” (and that built in)
• no stable interfaces
• hard-coded paths everywhere
• . . .

Bazel How Bazel Works Open-Sourcing Summary

The Task of Open-Sourcing Bazel

Bazel became open-source only after years of internal use
. . . on a single repository. (large, but just one)

• lot of dependencies, including Google-specific ones
• focus on the “Google languages” (and that built in)
• no stable interfaces
• hard-coded paths everywhere
• . . .

Bazel How Bazel Works Open-Sourcing Summary

The Task of Open-Sourcing Bazel

Bazel became open-source only after years of internal use
. . . on a single repository. (large, but just one)

• lot of dependencies, including Google-specific ones

• focus on the “Google languages” (and that built in)
• no stable interfaces
• hard-coded paths everywhere
• . . .

Bazel How Bazel Works Open-Sourcing Summary

The Task of Open-Sourcing Bazel

Bazel became open-source only after years of internal use
. . . on a single repository. (large, but just one)

• lot of dependencies, including Google-specific ones
“We have those libs anyway, so let’s just use them.”

• focus on the “Google languages” (and that built in)
• no stable interfaces
• hard-coded paths everywhere
• . . .

Bazel How Bazel Works Open-Sourcing Summary

The Task of Open-Sourcing Bazel

Bazel became open-source only after years of internal use
. . . on a single repository. (large, but just one)

• lot of dependencies, including Google-specific ones

• focus on the “Google languages” (and that built in)
• no stable interfaces
• hard-coded paths everywhere
• . . .

Bazel How Bazel Works Open-Sourcing Summary

The Task of Open-Sourcing Bazel

Bazel became open-source only after years of internal use
. . . on a single repository. (large, but just one)

• lot of dependencies, including Google-specific ones
• focus on the “Google languages” (and that built in)

• no stable interfaces
• hard-coded paths everywhere
• . . .

Bazel How Bazel Works Open-Sourcing Summary

The Task of Open-Sourcing Bazel

Bazel became open-source only after years of internal use
. . . on a single repository. (large, but just one)

• lot of dependencies, including Google-specific ones
• focus on the “Google languages” (and that built in)
• no stable interfaces

• hard-coded paths everywhere
• . . .

Bazel How Bazel Works Open-Sourcing Summary

The Task of Open-Sourcing Bazel

Bazel became open-source only after years of internal use
. . . on a single repository. (large, but just one)

• lot of dependencies, including Google-specific ones
• focus on the “Google languages” (and that built in)
• no stable interfaces
“I know all the uses of my interface, so I can easily change it.”

• hard-coded paths everywhere
• . . .

Bazel How Bazel Works Open-Sourcing Summary

The Task of Open-Sourcing Bazel

Bazel became open-source only after years of internal use
. . . on a single repository. (large, but just one)

• lot of dependencies, including Google-specific ones
• focus on the “Google languages” (and that built in)
• no stable interfaces

• hard-coded paths everywhere
• . . .

Bazel How Bazel Works Open-Sourcing Summary

The Task of Open-Sourcing Bazel

Bazel became open-source only after years of internal use
. . . on a single repository. (large, but just one)

• lot of dependencies, including Google-specific ones
• focus on the “Google languages” (and that built in)
• no stable interfaces
• hard-coded paths everywhere

• . . .

Bazel How Bazel Works Open-Sourcing Summary

The Task of Open-Sourcing Bazel

Bazel became open-source only after years of internal use
. . . on a single repository. (large, but just one)

• lot of dependencies, including Google-specific ones
• focus on the “Google languages” (and that built in)
• no stable interfaces
• hard-coded paths everywhere
“I know how my environment and how my compiler is called.”

• . . .

Bazel How Bazel Works Open-Sourcing Summary

The Task of Open-Sourcing Bazel

Bazel became open-source only after years of internal use
. . . on a single repository. (large, but just one)

• lot of dependencies, including Google-specific ones
• focus on the “Google languages” (and that built in)
• no stable interfaces
• hard-coded paths everywhere

• . . .

Bazel How Bazel Works Open-Sourcing Summary

The Task of Open-Sourcing Bazel

Bazel became open-source only after years of internal use
. . . on a single repository. (large, but just one)

• lot of dependencies, including Google-specific ones
• focus on the “Google languages” (and that built in)
• no stable interfaces
• hard-coded paths everywhere
• . . .

Bazel How Bazel Works Open-Sourcing Summary

Bazel Roadmap

• Big goal “1.0”. Properly open-source (expected 2018).

• public primary repository
• all design reviews public
• core team consisting not only of Google employees
• stable build language and APIs

• On the way there, technical improvements

• remote execution API
• community repositories of Skylark rules
• good story for remote repositories (including proper caching)
• . . .

Bazel How Bazel Works Open-Sourcing Summary

Bazel Roadmap

• Big goal “1.0”. Properly open-source (expected 2018).

• public primary repository
• all design reviews public
• core team consisting not only of Google employees
• stable build language and APIs

• On the way there, technical improvements

• remote execution API
• community repositories of Skylark rules
• good story for remote repositories (including proper caching)
• . . .

Bazel How Bazel Works Open-Sourcing Summary

Bazel Roadmap

• Big goal “1.0”. Properly open-source (expected 2018).
• public primary repository

• all design reviews public
• core team consisting not only of Google employees
• stable build language and APIs

• On the way there, technical improvements

• remote execution API
• community repositories of Skylark rules
• good story for remote repositories (including proper caching)
• . . .

Bazel How Bazel Works Open-Sourcing Summary

Bazel Roadmap

• Big goal “1.0”. Properly open-source (expected 2018).
• public primary repository
 clear interfaces between bazel, and, e.g., Google’s use

• all design reviews public
• core team consisting not only of Google employees
• stable build language and APIs

• On the way there, technical improvements

• remote execution API
• community repositories of Skylark rules
• good story for remote repositories (including proper caching)
• . . .

Bazel How Bazel Works Open-Sourcing Summary

Bazel Roadmap

• Big goal “1.0”. Properly open-source (expected 2018).
• public primary repository

• all design reviews public
• core team consisting not only of Google employees
• stable build language and APIs

• On the way there, technical improvements

• remote execution API
• community repositories of Skylark rules
• good story for remote repositories (including proper caching)
• . . .

Bazel How Bazel Works Open-Sourcing Summary

Bazel Roadmap

• Big goal “1.0”. Properly open-source (expected 2018).
• public primary repository
• all design reviews public

• core team consisting not only of Google employees
• stable build language and APIs

• On the way there, technical improvements

• remote execution API
• community repositories of Skylark rules
• good story for remote repositories (including proper caching)
• . . .

Bazel How Bazel Works Open-Sourcing Summary

Bazel Roadmap

• Big goal “1.0”. Properly open-source (expected 2018).
• public primary repository
• all design reviews public
• core team consisting not only of Google employees

• stable build language and APIs

• On the way there, technical improvements

• remote execution API
• community repositories of Skylark rules
• good story for remote repositories (including proper caching)
• . . .

Bazel How Bazel Works Open-Sourcing Summary

Bazel Roadmap

• Big goal “1.0”. Properly open-source (expected 2018).
• public primary repository
• all design reviews public
• core team consisting not only of Google employees
• stable build language and APIs

• On the way there, technical improvements

• remote execution API
• community repositories of Skylark rules
• good story for remote repositories (including proper caching)
• . . .

Bazel How Bazel Works Open-Sourcing Summary

Bazel Roadmap

• Big goal “1.0”. Properly open-source (expected 2018).
• public primary repository
• all design reviews public
• core team consisting not only of Google employees
• stable build language and APIs

• On the way there, technical improvements

• remote execution API
• community repositories of Skylark rules
• good story for remote repositories (including proper caching)
• . . .

Bazel How Bazel Works Open-Sourcing Summary

Bazel Roadmap

• Big goal “1.0”. Properly open-source (expected 2018).
• public primary repository
• all design reviews public
• core team consisting not only of Google employees
• stable build language and APIs

• On the way there, technical improvements
• remote execution API

• community repositories of Skylark rules
• good story for remote repositories (including proper caching)
• . . .

Bazel How Bazel Works Open-Sourcing Summary

Bazel Roadmap

• Big goal “1.0”. Properly open-source (expected 2018).
• public primary repository
• all design reviews public
• core team consisting not only of Google employees
• stable build language and APIs

• On the way there, technical improvements
• remote execution API
• community repositories of Skylark rules

• good story for remote repositories (including proper caching)
• . . .

Bazel How Bazel Works Open-Sourcing Summary

Bazel Roadmap

• Big goal “1.0”. Properly open-source (expected 2018).
• public primary repository
• all design reviews public
• core team consisting not only of Google employees
• stable build language and APIs

• On the way there, technical improvements
• remote execution API
• community repositories of Skylark rules

Bazel more language agnostic tool

• good story for remote repositories (including proper caching)
• . . .

Bazel How Bazel Works Open-Sourcing Summary

Bazel Roadmap

• Big goal “1.0”. Properly open-source (expected 2018).
• public primary repository
• all design reviews public
• core team consisting not only of Google employees
• stable build language and APIs

• On the way there, technical improvements
• remote execution API
• community repositories of Skylark rules

• good story for remote repositories (including proper caching)
• . . .

Bazel How Bazel Works Open-Sourcing Summary

Bazel Roadmap

• Big goal “1.0”. Properly open-source (expected 2018).
• public primary repository
• all design reviews public
• core team consisting not only of Google employees
• stable build language and APIs

• On the way there, technical improvements
• remote execution API
• community repositories of Skylark rules
• good story for remote repositories (including proper caching)

• . . .

Bazel How Bazel Works Open-Sourcing Summary

Bazel Roadmap

• Big goal “1.0”. Properly open-source (expected 2018).
• public primary repository
• all design reviews public
• core team consisting not only of Google employees
• stable build language and APIs

• On the way there, technical improvements
• remote execution API
• community repositories of Skylark rules
• good story for remote repositories (including proper caching)
• . . .

Bazel How Bazel Works Open-Sourcing Summary

Summary

• declarative BUILD files
. . . also supporting your own extensions

• all dependencies tracked correctness
(sandboxes to ensure all I/O is known)

• full knowledge enables fast builds
(caching of actions, remote execution, parallelism, . . .)

• open-source

Bazel How Bazel Works Open-Sourcing Summary

Try Bazel

Try Bazel yourself.

• Homepage https://bazel.build/

• Mailing lists
• bazel-discuss@googlegroups.com
• bazel-dev@googlegroups.com

• Repository and issue tracker
https://github.com/bazelbuild/bazel

• IRC #bazel on irc.freenode.net

• Release key fingerprint
71A1 D0EF CFEB 6281 FD04 37C9 3D59 19B4 4845 7EE0

Thanks for your attention. Questions?

https://bazel.build/
https://github.com/bazelbuild/bazel

	Bazel
	What is Bazel?

	How Bazel Works
	Overview of a bazel build
	Example of a BUILD File
	Evaluation
	The Declarative Language

	Open-Sourcing
	The Story So Far
	Roadmap

	Summary
	Summary
	Getting Bazel

