
just, a build system
Dept: Intelligent Cloud Technologies Lab, Huawei Munich Research Center
Date: Fall 2022

Build System Multi Repo Rules Get it!

Build Systems (Overview)
A build system .. .

• computes a function
• from source files to final artifacts (libraries, binaries, etc)
• typically composed of smaller functions (“actions”)

like individual compiler invocations
• . . . that is declared in terms meaningful to a programmer

• like “library”, “binary”; not individual object files, etc
• without hard-coding language-specific knowledge (→ user-defined “rules”)
• allowing multi-language builds

• Requirements
• must be correct
• should be fast

1 HUAWEI TECHNOLOGIES DÜSSELDORF GMBH, Munich Research Center

Build System Multi Repo Rules Get it!

just Example

$ cat TARGETS
{ "helloworld":
{ "type": ["@", "rules", "CC", "binary"]
, "name": ["helloworld"]
, "srcs": ["main.cpp"]
, "deps": ["libhello"]
}

, "libhello":
{ "type": ["@", "rules", "CC", "library"]
, "name": ["hello"]
, "srcs": ["hello.cpp"]
, "hdrs": ["hello.hpp"]
, "deps": ["utils"]
}

, "utils":
{ "type": ["@", "rules", "CC", "library"]
, "name": ["utils"]
, "srcs": ["utils.cpp"]
, "hdrs": ["utils.hpp"]
}

}
$

2 HUAWEI TECHNOLOGIES DÜSSELDORF GMBH, Munich Research Center

Build System Multi Repo Rules Get it!

just Example

$ cat TARGETS
{ "helloworld":
{ "type": ["@", "rules", "CC", "binary"]
, "name": ["helloworld"]
, "srcs": ["main.cpp"]
, "deps": ["libhello"]
}

, "libhello":
{ "type": ["@", "rules", "CC", "library"]
, "name": ["hello"]
, "srcs": ["hello.cpp"]
, "hdrs": ["hello.hpp"]
, "deps": ["utils"]
}

, "utils":
{ "type": ["@", "rules", "CC", "library"]
, "name": ["utils"]
, "srcs": ["utils.cpp"]
, "hdrs": ["utils.hpp"]
}

}
$

helloworld

libhello

defaults

utils

2 HUAWEI TECHNOLOGIES DÜSSELDORF GMBH, Munich Research Center

Build System Multi Repo Rules Get it!

just Example

helloworld

libhello

defaults

utils

2 HUAWEI TECHNOLOGIES DÜSSELDORF GMBH, Munich Research Center

Build System Multi Repo Rules Get it!

just Example

helloworld

libhello

defaults

utils
c++

hello.o

ar

libhello.a

c++

utils.o

ar

libutils.a

c++

main.o

c++

helloworld

. hello.cpp hello.hpp

.

. utils.cpp utils.hpp

main.cpp

2 HUAWEI TECHNOLOGIES DÜSSELDORF GMBH, Munich Research Center

Build System Multi Repo Rules Get it!

just Example

c++

hello.o

ar

libhello.a

c++

utils.o

ar

libutils.a

c++

main.o

c++

helloworld

. hello.cpp hello.hpp

.

. utils.cpp utils.hpp

main.cpp

2 HUAWEI TECHNOLOGIES DÜSSELDORF GMBH, Munich Research Center

Build System Multi Repo Rules Get it!

just Example

c++

hello.o

ar

libhello.a

c++

utils.o

ar

libutils.a

c++

main.o

c++

helloworld

. hello.cpp hello.hpp

.

. utils.cpp utils.hpp

main.cpp

$ just build -C repos.json helloworld
INFO: Requested target is [["@","","","helloworld"],{}]
INFO: Analysed target [["@","","","helloworld"],{}]
INFO: Export targets found: 0 cached, 0 uncached, 0 not eligible for caching
INFO: Discovered 6 actions, 3 trees, 0 blobs
INFO: Building [["@","","","helloworld"],{}].
INFO: Processed 6 actions, 0 cache hits.
INFO: Artifacts built, logical paths are:

helloworld [70020e8a5004bf6fa2f91fbb2cddca476e7723f5:18448:x]
$

$ just install -C repos.json -o . helloworld
INFO: Requested target is [["@","","","helloworld"],{}]
INFO: Analysed target [["@","","","helloworld"],{}]
INFO: Export targets found: 0 cached, 0 uncached, 0 not eligible for caching
INFO: Discovered 6 actions, 3 trees, 0 blobs
INFO: Building [["@","","","helloworld"],{}].
INFO: Processed 6 actions, 6 cache hits.
INFO: Artifacts can be found in:

/worker/build/62b481553d2fe448/root/work/helloworld/helloworld [70020e8a5004bf6fa2f91fbb2cddca476e7723f5:18448:x]
$

$./helloworld
Hello World!
$

2 HUAWEI TECHNOLOGIES DÜSSELDORF GMBH, Munich Research Center

Build System Multi Repo Rules Get it!

just Example

c++

hello.o

ar

libhello.a

c++

utils.o

ar

libutils.a

c++

main.o

c++

helloworld

. hello.cpp hello.hpp

.

. utils.cpp utils.hpp

main.cpp

$ just build -C repos.json helloworld
INFO: Requested target is [["@","","","helloworld"],{}]
INFO: Analysed target [["@","","","helloworld"],{}]
INFO: Export targets found: 0 cached, 0 uncached, 0 not eligible for caching
INFO: Discovered 6 actions, 3 trees, 0 blobs
INFO: Building [["@","","","helloworld"],{}].
INFO: Processed 6 actions, 0 cache hits.
INFO: Artifacts built, logical paths are:

helloworld [70020e8a5004bf6fa2f91fbb2cddca476e7723f5:18448:x]
$

$ just install -C repos.json -o . helloworld
INFO: Requested target is [["@","","","helloworld"],{}]
INFO: Analysed target [["@","","","helloworld"],{}]
INFO: Export targets found: 0 cached, 0 uncached, 0 not eligible for caching
INFO: Discovered 6 actions, 3 trees, 0 blobs
INFO: Building [["@","","","helloworld"],{}].
INFO: Processed 6 actions, 6 cache hits.
INFO: Artifacts can be found in:

/worker/build/62b481553d2fe448/root/work/helloworld/helloworld [70020e8a5004bf6fa2f91fbb2cddca476e7723f5:18448:x]
$

$./helloworld
Hello World!
$

2 HUAWEI TECHNOLOGIES DÜSSELDORF GMBH, Munich Research Center

Build System Multi Repo Rules Get it!

just Example

c++

hello.o

ar

libhello.a

c++

utils.o

ar

libutils.a

c++

main.o

c++

helloworld

. hello.cpp hello.hpp

.

. utils.cpp utils.hpp

main.cpp

$ just build -C repos.json helloworld
INFO: Requested target is [["@","","","helloworld"],{}]
INFO: Analysed target [["@","","","helloworld"],{}]
INFO: Export targets found: 0 cached, 0 uncached, 0 not eligible for caching
INFO: Discovered 6 actions, 3 trees, 0 blobs
INFO: Building [["@","","","helloworld"],{}].
INFO: Processed 6 actions, 0 cache hits.
INFO: Artifacts built, logical paths are:

helloworld [70020e8a5004bf6fa2f91fbb2cddca476e7723f5:18448:x]
$

$ just install -C repos.json -o . helloworld
INFO: Requested target is [["@","","","helloworld"],{}]
INFO: Analysed target [["@","","","helloworld"],{}]
INFO: Export targets found: 0 cached, 0 uncached, 0 not eligible for caching
INFO: Discovered 6 actions, 3 trees, 0 blobs
INFO: Building [["@","","","helloworld"],{}].
INFO: Processed 6 actions, 6 cache hits.
INFO: Artifacts can be found in:

/worker/build/62b481553d2fe448/root/work/helloworld/helloworld [70020e8a5004bf6fa2f91fbb2cddca476e7723f5:18448:x]
$

$./helloworld
Hello World!
$

2 HUAWEI TECHNOLOGIES DÜSSELDORF GMBH, Munich Research Center

Build System Multi Repo Rules Get it!

Remote Build Execution

A remote build execution system consists of

• a Content-Adressable Store (CAS)
• the actual execution service

3 HUAWEI TECHNOLOGIES DÜSSELDORF GMBH, Munich Research Center

Build System Multi Repo Rules Get it!

Remote Build Execution

CAS
A remote build execution system consists of

• a Content-Adressable Store (CAS)
(files, indexed by (essentially) their hash)

• the actual execution service

3 HUAWEI TECHNOLOGIES DÜSSELDORF GMBH, Munich Research Center

Build System Multi Repo Rules Get it!

Remote Build Execution

CAS

service

exec

remoteA remote build execution system consists of
• a Content-Adressable Store (CAS)

(files, indexed by (essentially) their hash)
• the actual execution service

• using many workers, sharing files via the CAS
• using an action cache (AC)

3 HUAWEI TECHNOLOGIES DÜSSELDORF GMBH, Munich Research Center

Build System Multi Repo Rules Get it!

Remote Build Execution

CAS worker

service

exec

remoteA remote build execution system consists of
• a Content-Adressable Store (CAS)

(files, indexed by (essentially) their hash)
• the actual execution service

• using many workers, sharing files via the CAS

• using an action cache (AC)

3 HUAWEI TECHNOLOGIES DÜSSELDORF GMBH, Munich Research Center

Build System Multi Repo Rules Get it!

Remote Build Execution

CAS worker

service

exec

remote

cache

action

A remote build execution system consists of
• a Content-Adressable Store (CAS)

(files, indexed by (essentially) their hash)
• the actual execution service

• using many workers, sharing files via the CAS
• using an action cache (AC)

3 HUAWEI TECHNOLOGIES DÜSSELDORF GMBH, Munich Research Center

Build System Multi Repo Rules Get it!

Remote Build Execution

CAS worker

service

exec

remote

cache

action

A remote build execution system consists of
• a Content-Adressable Store (CAS)
• the actual execution service

3 HUAWEI TECHNOLOGIES DÜSSELDORF GMBH, Munich Research Center

Build System Multi Repo Rules Get it!

Remote Build Execution

CAS worker
service
exec
remote

cache
action

where needed
upload files

A remote build execution system consists of
• a Content-Adressable Store (CAS)
• the actual execution service

To execute an action

upload, request, receive answer

• files unknown to the CAS are uploaded

• the action is requested
• a description of the output is received, typically from AC
• actual artifacts can be downloaded from CAS, should they be needed

3 HUAWEI TECHNOLOGIES DÜSSELDORF GMBH, Munich Research Center

Build System Multi Repo Rules Get it!

Remote Build Execution

CAS worker
service
exec
remote

cache
action

where needed
upload files

request
send

A remote build execution system consists of
• a Content-Adressable Store (CAS)
• the actual execution service

To execute an action

upload, request, receive answer

• files unknown to the CAS are uploaded
• the action is requested

• a description of the output is received, typically from AC
• actual artifacts can be downloaded from CAS, should they be needed

3 HUAWEI TECHNOLOGIES DÜSSELDORF GMBH, Munich Research Center

Build System Multi Repo Rules Get it!

Remote Build Execution

CAS worker
service
exec
remote

cache
action

where needed
upload files

request
send

description
result
receive

A remote build execution system consists of
• a Content-Adressable Store (CAS)
• the actual execution service

To execute an action

upload, request, receive answer

• files unknown to the CAS are uploaded
• the action is requested
• a description of the output is received, typically from AC

• actual artifacts can be downloaded from CAS, should they be needed

3 HUAWEI TECHNOLOGIES DÜSSELDORF GMBH, Munich Research Center

Build System Multi Repo Rules Get it!

Remote Build Execution

CAS worker
service
exec
remote

cache
action

where needed
upload files

request
send

description
result
receive

A remote build execution system consists of
• a Content-Adressable Store (CAS)
• the actual execution service

To execute an action

upload, request, receive answer

• files unknown to the CAS are uploaded
• the action is requested
• a description of the output is received, typically from AC
• actual artifacts can be downloaded from CAS, should they be needed

3 HUAWEI TECHNOLOGIES DÜSSELDORF GMBH, Munich Research Center

Build System Multi Repo Rules Get it!

Remote Build Execution

CAS worker
service
exec
remote

cache
action

where needed
upload files

request
send

description
result
receive

A remote build execution system consists of
• a Content-Adressable Store (CAS)
• the actual execution service

To execute an action upload, request, receive answer

3 HUAWEI TECHNOLOGIES DÜSSELDORF GMBH, Munich Research Center

Build System Multi Repo Rules Get it!

Remote Build Execution

CAS worker
service
exec
remote

cache
action

where needed
upload files

request
send

description
result
receive

A remote build execution system consists of
• a Content-Adressable Store (CAS)
• the actual execution service

To execute an action upload, request, receive answer

Benefits of remote execution
• every action executed in isolation; dependencies are correct
• AC can be shared between developpers
• better parallelism

3 HUAWEI TECHNOLOGIES DÜSSELDORF GMBH, Munich Research Center

Build System Multi Repo Rules Get it!

Remote Build Execution

CAS worker
service
exec
remote

cache
action

where needed
upload files

request
send

description
result
receive

A remote build execution system consists of
• a Content-Adressable Store (CAS)
• the actual execution service

To execute an action upload, request, receive answer

Benefits of remote execution
• every action executed in isolation; dependencies are correct
• AC can be shared between developpers
• better parallelism

But also works locally!
 actions can have their own view and output convention (conflict-free by design)

3 HUAWEI TECHNOLOGIES DÜSSELDORF GMBH, Munich Research Center

Build System Multi Repo Rules Get it!

Remote Build Execution

CAS worker
service
exec
remote

cache
action

where needed
upload files

request
send

description
result
receive

A remote build execution system consists of
• a Content-Adressable Store (CAS)
• the actual execution service

To execute an action upload, request, receive answer

Benefits of remote execution
• every action executed in isolation; dependencies are correct
• AC can be shared between developpers
• better parallelism

But also works locally!
 actions can have their own view and output convention (conflict-free by design)

As people use git as VCS, let’s use git blob/tree identifiers everywhere!
3 HUAWEI TECHNOLOGIES DÜSSELDORF GMBH, Munich Research Center

Build System Multi Repo Rules Get it!

Multi-Repository Builds

• Code can be split over many repositories
(also good do avoid duplication, e.g., rules)

• Have to refer to other repositories
• agreeing on global names doesn’t work
• often “any libfoo will do”

 use local names and bind in a project configuration (get DFA)

• Repo semantics must be independent of caller—or if “main” repository
 let targets decide where to logically place artifacts; we have staging anyway

• As location doesn’t matter, can as well use git trees as roots quickly get blob ids
(and use one default repository to store everything)

• Additional benefit: target-level caching if reachable part of DFA unchanged
(minimal DFA as canonical representation; plus target name, configuration)
 keep graphs to handle small; still flexible to build in di�erent configurations

4 HUAWEI TECHNOLOGIES DÜSSELDORF GMBH, Munich Research Center

Build System Multi Repo Rules Get it!

Multi-Repository Builds

• Code can be split over many repositories
(also good do avoid duplication, e.g., rules)

• Have to refer to other repositories
• agreeing on global names doesn’t work
• often “any libfoo will do”

 use local names and bind in a project configuration (get DFA)
• Repo semantics must be independent of caller—or if “main” repository
 let targets decide where to logically place artifacts; we have staging anyway

• As location doesn’t matter, can as well use git trees as roots quickly get blob ids
(and use one default repository to store everything)

• Additional benefit: target-level caching if reachable part of DFA unchanged
(minimal DFA as canonical representation; plus target name, configuration)
 keep graphs to handle small; still flexible to build in di�erent configurations

4 HUAWEI TECHNOLOGIES DÜSSELDORF GMBH, Munich Research Center

Build System Multi Repo Rules Get it!

Multi-Repository Builds
rules

patches

protoc

google_apis

rules

protoc

rules

rules

absl

zlib

caresupb libsslrules

protobuf

re2

rules

googleapis

bazel_remote_apiscli11

grpc

gsl-lite

libgit2

json

catch2

fmt

just-distfiles

ssl

protoc

rules

zlib

patches ssl

rules

grpc

base

protoc

rules

rules

rules

rules

grpc

rules

base

rules

rules

base

base

base

base

protoc

rules

zlib

grpc

base

protoc

rules

• Code can be split over many repositories
(also good do avoid duplication, e.g., rules)

• Have to refer to other repositories
• agreeing on global names doesn’t work
• often “any libfoo will do”

 use local names and bind in a project configuration (get DFA)

• Repo semantics must be independent of caller—or if “main” repository
 let targets decide where to logically place artifacts; we have staging anyway

• As location doesn’t matter, can as well use git trees as roots quickly get blob ids
(and use one default repository to store everything)

• Additional benefit: target-level caching if reachable part of DFA unchanged
(minimal DFA as canonical representation; plus target name, configuration)
 keep graphs to handle small; still flexible to build in di�erent configurations

4 HUAWEI TECHNOLOGIES DÜSSELDORF GMBH, Munich Research Center

Build System Multi Repo Rules Get it!

Multi-Repository Builds
rules

patches

protoc

google_apis

rules

protoc

rules

rules

absl

zlib

caresupb libsslrules

protobuf

re2

rules

googleapis

bazel_remote_apiscli11

grpc

gsl-lite

libgit2

json

catch2

fmt

just-distfiles

ssl

protoc

rules

zlib

patches ssl

rules

grpc

base

protoc

rules

rules

rules

rules

grpc

rules

base

rules

rules

base

base

base

base

protoc

rules

zlib

grpc

base

protoc

rules

• Code can be split over many repositories
(also good do avoid duplication, e.g., rules)

• Have to refer to other repositories
• agreeing on global names doesn’t work
• often “any libfoo will do”

 use local names and bind in a project configuration (get DFA)
• Repo semantics must be independent of caller—or if “main” repository
 let targets decide where to logically place artifacts; we have staging anyway

• As location doesn’t matter, can as well use git trees as roots quickly get blob ids
(and use one default repository to store everything)

• Additional benefit: target-level caching if reachable part of DFA unchanged
(minimal DFA as canonical representation; plus target name, configuration)
 keep graphs to handle small; still flexible to build in di�erent configurations

4 HUAWEI TECHNOLOGIES DÜSSELDORF GMBH, Munich Research Center

Build System Multi Repo Rules Get it!

Multi-Repository Builds
rules

patches

protoc

google_apis

rules

protoc

rules

rules

absl

zlib

caresupb libsslrules

protobuf

re2

rules

googleapis

bazel_remote_apiscli11

grpc

gsl-lite

libgit2

json

catch2

fmt

just-distfiles

ssl

protoc

rules

zlib

patches ssl

rules

grpc

base

protoc

rules

rules

rules

rules

grpc

rules

base

rules

rules

base

base

base

base

protoc

rules

zlib

grpc

base

protoc

rules

• Code can be split over many repositories
(also good do avoid duplication, e.g., rules)

• Have to refer to other repositories
• agreeing on global names doesn’t work
• often “any libfoo will do”

 use local names and bind in a project configuration (get DFA)
• Repo semantics must be independent of caller—or if “main” repository
 let targets decide where to logically place artifacts; we have staging anyway

• As location doesn’t matter, can as well use git trees as roots quickly get blob ids
(and use one default repository to store everything)

• Additional benefit: target-level caching if reachable part of DFA unchanged
(minimal DFA as canonical representation; plus target name, configuration)
 keep graphs to handle small; still flexible to build in di�erent configurations

4 HUAWEI TECHNOLOGIES DÜSSELDORF GMBH, Munich Research Center

Build System Multi Repo Rules Get it!

Multi-Repository Builds
rules

patches

protoc

google_apis

rules

protoc

rules

rules

absl

zlib

caresupb libsslrules

protobuf

re2

rules

googleapis

bazel_remote_apiscli11

grpc

gsl-lite

libgit2

json

catch2

fmt

just-distfiles

ssl

protoc

rules

zlib

patches ssl

rules

grpc

base

protoc

rules

rules

rules

rules

grpc

rules

base

rules

rules

base

base

base

base

protoc

rules

zlib

grpc

base

protoc

rules

• Code can be split over many repositories
(also good do avoid duplication, e.g., rules)

• Have to refer to other repositories
• agreeing on global names doesn’t work
• often “any libfoo will do”

 use local names and bind in a project configuration (get DFA)
• Repo semantics must be independent of caller—or if “main” repository
 let targets decide where to logically place artifacts; we have staging anyway

• As location doesn’t matter, can as well use git trees as roots quickly get blob ids
(and use one default repository to store everything)

• Additional benefit: target-level caching if reachable part of DFA unchanged
(minimal DFA as canonical representation; plus target name, configuration)
 keep graphs to handle small; still flexible to build in di�erent configurations

4 HUAWEI TECHNOLOGIES DÜSSELDORF GMBH, Munich Research Center

Build System Multi Repo Rules Get it!

Layers
• From a repository, di�erent information is taken

• source files
• description of the targets
• definition of the rules and their expressions

• No need that they all come from the same file root!
• separate source/target roots useful for building third-party software
• . . . or even for just picking up preinstalled dependencies

• Nothing special about the name TARGETS either . . .

5 HUAWEI TECHNOLOGIES DÜSSELDORF GMBH, Munich Research Center

Build System Multi Repo Rules Get it!

Layers
• From a repository, di�erent information is taken

• source files
• description of the targets
• definition of the rules and their expressions

• No need that they all come from the same file root!
• separate source/target roots useful for building third-party software
• . . . or even for just picking up preinstalled dependencies

• Nothing special about the name TARGETS either . . .

5 HUAWEI TECHNOLOGIES DÜSSELDORF GMBH, Munich Research Center

Build System Multi Repo Rules Get it!

Layers
• From a repository, di�erent information is taken

• source files
• description of the targets
• definition of the rules and their expressions

• No need that they all come from the same file root!
• separate source/target roots useful for building third-party software
• . . . or even for just picking up preinstalled dependencies

• Nothing special about the name TARGETS either . . .

5 HUAWEI TECHNOLOGIES DÜSSELDORF GMBH, Munich Research Center

Build System Multi Repo Rules Get it!

Layers Example: Building Third-Party Code

$ cat repos.json
{ "repositories":
{ "":
{ "workspace_root": ["file", "third_party/helloworld"]
, "target_root": ["file", "etc/imports"]
, "target_file_name": "TARGETS.hello"
, "bindings": {"rules": "rules", "patches": "patches"}
}

, "patches": {"workspace_root": ["file", "patches"]}
, "rules": {"workspace_root": ["file", "../rules"]}
}

}
$

6 HUAWEI TECHNOLOGIES DÜSSELDORF GMBH, Munich Research Center

Build System Multi Repo Rules Get it!

Layers Example: Building Third-Party Code

$ ls third_party/helloworld
hello.cpp
hello.hpp
main.cpp
utils.cpp
utils.hpp
$

6 HUAWEI TECHNOLOGIES DÜSSELDORF GMBH, Munich Research Center

Build System Multi Repo Rules Get it!

Layers Example: Building Third-Party Code

$ cat etc/imports/TARGETS.hello
{ "helloworld":
{ "type": ["@", "rules", "CC", "binary"]
, "name": ["helloworld"]
, "srcs": ["main.cpp"]
, "deps": ["libhello"]
}

, "libhello":
{ "type": ["@", "rules", "CC", "library"]
, "name": ["hello"]
, "srcs": ["hello.cpp"]
, "hdrs": ["hello.hpp"]
, "deps": ["utils"]
}

, "utils":
{ "type": ["@", "rules", "CC", "library"]
, "name": ["utils"]
, "srcs": ["utils.cpp"]
, "hdrs": ["utils.hpp"]
}

}
$

6 HUAWEI TECHNOLOGIES DÜSSELDORF GMBH, Munich Research Center

Build System Multi Repo Rules Get it!

Layers Example: Building Third-Party Code

$ just build -C repos.json helloworld
INFO: Requested target is [["@","","","helloworld"],{}]
INFO: Analysed target [["@","","","helloworld"],{}]
INFO: Export targets found: 0 cached, 0 uncached, 0 not eligible for caching
INFO: Discovered 6 actions, 3 trees, 0 blobs
INFO: Building [["@","","","helloworld"],{}].
INFO: Processed 6 actions, 0 cache hits.
INFO: Artifacts built, logical paths are:

helloworld [70020e8a5004bf6fa2f91fbb2cddca476e7723f5:18448:x]
$

6 HUAWEI TECHNOLOGIES DÜSSELDORF GMBH, Munich Research Center

Build System Multi Repo Rules Get it!

Layers Example: Building Third-Party Code

$ just install -C repos.json -o . main.cpp && cp main.cpp main.cpp.orig \
&& (echo '%s/World/Universe/'; echo 'w'; echo 'q') | ed main.cpp \
&& (diff -u main.cpp.orig main.cpp > patches/main.diff || :) && rm main.cpp*

INFO: Requested target is [["@","","","main.cpp"],{}]
INFO: Analysed target [["@","","","main.cpp"],{}]
INFO: Export targets found: 0 cached, 0 uncached, 0 not eligible for caching
INFO: Discovered 0 actions, 0 trees, 0 blobs
INFO: Building [["@","","","main.cpp"],{}].
INFO: Processed 0 actions, 0 cache hits.
INFO: Artifacts can be found in:

/worker/build/626f7f7e70da0cb1/root/work/myproject/main.cpp [93fa74581864061cace4a388a66ebaafaa823f81:88:f]
88
91
$

6 HUAWEI TECHNOLOGIES DÜSSELDORF GMBH, Munich Research Center

Build System Multi Repo Rules Get it!

Layers Example: Building Third-Party Code
Interlude: entity naming

• single string: "foo"
target in the same module (i.e., directory)

• list of length 2: ["foo", "bar"]
module and target

• list of length≥ 3: first entry determines naming scheme
• ["@", local repo name, module, target]

• ["./", relative module path, target]
• ["FILE", null, name]

explicitly a file in the current module
• ["TREE", null, name]

explicitly the directory in the current module, rooted at the given name
• . . .

If the target is not explicitly declared, fall back to source file of that name
6 HUAWEI TECHNOLOGIES DÜSSELDORF GMBH, Munich Research Center

Build System Multi Repo Rules Get it!

Layers Example: Building Third-Party Code
Interlude: entity naming

• single string: "foo"
target in the same module (i.e., directory)

• list of length 2: ["foo", "bar"]
module and target

• list of length≥ 3: first entry determines naming scheme
• ["@", local repo name, module, target]
• ["./", relative module path, target]
• ["FILE", null, name]

explicitly a file in the current module
• ["TREE", null, name]

explicitly the directory in the current module, rooted at the given name
• . . .

If the target is not explicitly declared, fall back to source file of that name
6 HUAWEI TECHNOLOGIES DÜSSELDORF GMBH, Munich Research Center

Build System Multi Repo Rules Get it!

Layers Example: Building Third-Party Code

$ ${EDITOR} etc/imports/TARGETS.hello && cat etc/imports/TARGETS.hello
{ "helloworld":
{ "type": ["@", "rules", "CC", "binary"]
, "name": ["helloworld"]
, "srcs": ["main.cpp"]
, "deps": ["libhello"]
}

, "libhello":
{ "type": ["@", "rules", "CC", "library"]
, "name": ["hello"]
, "srcs": ["hello.cpp"]
, "hdrs": ["hello.hpp"]
, "deps": ["utils"]
}

, "utils":
{ "type": ["@", "rules", "CC", "library"]
, "name": ["utils"]
, "srcs": ["utils.cpp"]
, "hdrs": ["utils.hpp"]
}

, "main.cpp":
{ "type": ["@", "rules", "patch", "file"]
, "src": [["FILE", null, "main.cpp"]]
, "patch": [["@", "patches", "", "main.diff"]]
}

}
$

6 HUAWEI TECHNOLOGIES DÜSSELDORF GMBH, Munich Research Center

Build System Multi Repo Rules Get it!

Layers Example: Building Third-Party Code

$ cat etc/imports/TARGETS.hello && just analyse -C repos.json --dump-actions - main.cpp },
{ "helloworld": "runfiles": {
{ "type": ["@", "rules", "CC", "binary"] "main.cpp": {"data":{"id":"639b4a9026450069674242e821a37d4dd2755f52","path":"patched"},"type":"ACTION"}
, "name": ["helloworld"] }
, "srcs": ["main.cpp"] }
, "deps": ["libhello"] INFO: Actions for target [["@","","","main.cpp"],{}]:
} [

, "libhello": {
{ "type": ["@", "rules", "CC", "library"] "command": ["patch","-s","--read-only=ignore","--follow-symlinks","-o","patched","orig","patch"],
, "name": ["hello"] "input": {
, "srcs": ["hello.cpp"] "orig": {
, "hdrs": ["hello.hpp"] "data": {
, "deps": ["utils"] "path": "main.cpp",
} "repository": ""

, "utils": },
{ "type": ["@", "rules", "CC", "library"] "type": "LOCAL"
, "name": ["utils"] },
, "srcs": ["utils.cpp"] "patch": {
, "hdrs": ["utils.hpp"] "data": {
} "path": "main.diff",

, "main.cpp": "repository": "patches"
{ "type": ["@", "rules", "patch", "file"] },
, "src": [["FILE", null, "main.cpp"]] "type": "LOCAL"
, "patch": [["@", "patches", "", "main.diff"]] }
} },

} "output": ["patched"]
INFO: Requested target is [["@","","","main.cpp"],{}] }
INFO: Result of target [["@","","","main.cpp"],{}]: {]

"artifacts": { $
"main.cpp": {"data":{"id":"639b4a9026450069674242e821a37d4dd2755f52","path":"patched"},"type":"ACTION"}

},
"provides": {

6 HUAWEI TECHNOLOGIES DÜSSELDORF GMBH, Munich Research Center

Build System Multi Repo Rules Get it!

Layers Example: Building Third-Party Code

c++

hello.o

ar

libhello.a

c++

utils.o

c++

helloworld

ar

libutils.a

patch

patched

c++

main.o

. hello.cpp hello.hpp

.

. utils.cpp utils.hpp

main.cpp main.diff

$ just install -C repos.json -o . helloworld && ./helloworld
INFO: Requested target is [["@","","","helloworld"],{}]
INFO: Analysed target [["@","","","helloworld"],{}]
INFO: Export targets found: 0 cached, 0 uncached, 0 not eligible for caching
INFO: Discovered 7 actions, 3 trees, 1 blobs
INFO: Building [["@","","","helloworld"],{}].
INFO: Processed 7 actions, 4 cache hits.
INFO: Artifacts can be found in:

/worker/build/626f7f7e70da0cb1/root/work/myproject/helloworld [8ae345e57b482a92068c4afb33dbcf5d1fd77960:18448:x]
Hello Universe!
$

6 HUAWEI TECHNOLOGIES DÜSSELDORF GMBH, Munich Research Center

Build System Multi Repo Rules Get it!

Layers Example: Building Third-Party Code

c++

hello.o

ar

libhello.a

c++

utils.o

c++

helloworld

ar

libutils.a

patch

patched

c++

main.o

. hello.cpp hello.hpp

.

. utils.cpp utils.hpp

main.cpp main.diff

$ just install -C repos.json -o . helloworld && ./helloworld
INFO: Requested target is [["@","","","helloworld"],{}]
INFO: Analysed target [["@","","","helloworld"],{}]
INFO: Export targets found: 0 cached, 0 uncached, 0 not eligible for caching
INFO: Discovered 7 actions, 3 trees, 1 blobs
INFO: Building [["@","","","helloworld"],{}].
INFO: Processed 7 actions, 4 cache hits.
INFO: Artifacts can be found in:

/worker/build/626f7f7e70da0cb1/root/work/myproject/helloworld [8ae345e57b482a92068c4afb33dbcf5d1fd77960:18448:x]
Hello Universe!
$

6 HUAWEI TECHNOLOGIES DÜSSELDORF GMBH, Munich Research Center

Build System Multi Repo Rules Get it!

Rules: Data of a Target

• Rules are used to describe targets of a given type, like a C++ library

• Targets are given by

• the actual artifact, like libfoo.a
• additional files that should be installed with the target, like headers
• any additional information needed to use the target

(no reflection on the dependency graph!)
• Headers of public dependencies
• Information on how to link, including libraries depended upon
• . . .

7 HUAWEI TECHNOLOGIES DÜSSELDORF GMBH, Munich Research Center

Build System Multi Repo Rules Get it!

Rules: Data of a Target

• Rules are used to describe targets of a given type, like a C++ library
• Targets are given by

• the actual artifact, like libfoo.a
• additional files that should be installed with the target, like headers
• any additional information needed to use the target

(no reflection on the dependency graph!)
• Headers of public dependencies
• Information on how to link, including libraries depended upon
• . . .

7 HUAWEI TECHNOLOGIES DÜSSELDORF GMBH, Munich Research Center

Build System Multi Repo Rules Get it!

Rules: Data of a Target

• Rules are used to describe targets of a given type, like a C++ library
• Targets are given by

• the actual artifact, like libfoo.a

• additional files that should be installed with the target, like headers
• any additional information needed to use the target

(no reflection on the dependency graph!)
• Headers of public dependencies
• Information on how to link, including libraries depended upon
• . . .

7 HUAWEI TECHNOLOGIES DÜSSELDORF GMBH, Munich Research Center

Build System Multi Repo Rules Get it!

Rules: Data of a Target

• Rules are used to describe targets of a given type, like a C++ library
• Targets are given by

• the actual artifact, like libfoo.a
• additional files that should be installed with the target, like headers

• any additional information needed to use the target
(no reflection on the dependency graph!)

• Headers of public dependencies
• Information on how to link, including libraries depended upon
• . . .

7 HUAWEI TECHNOLOGIES DÜSSELDORF GMBH, Munich Research Center

Build System Multi Repo Rules Get it!

Rules: Data of a Target

• Rules are used to describe targets of a given type, like a C++ library
• Targets are given by

• the actual artifact, like libfoo.a
• additional files that should be installed with the target, like headers
• any additional information needed to use the target

(no reflection on the dependency graph!)
• Headers of public dependencies
• Information on how to link, including libraries depended upon
• . . .

7 HUAWEI TECHNOLOGIES DÜSSELDORF GMBH, Munich Research Center

Build System Multi Repo Rules Get it!

Rules: Data of a Target (Example)

$ cat TARGETS
{ "helloworld":
{ "type": ["@", "rules", "CC", "binary"]
, "name": ["helloworld"]
, "srcs": ["main.cpp"]
, "deps": ["libhello"]
}

, "libhello":
{ "type": ["@", "rules", "CC", "library"]
, "name": ["hello"]
, "srcs": ["hello.cpp"]
, "hdrs": ["hello.hpp"]
, "deps": ["utils"]
}

, "utils":
{ "type": ["@", "rules", "CC", "library"]
, "name": ["utils"]
, "srcs": ["utils.cpp"]
, "hdrs": ["utils.hpp"]
}

}
$

8 HUAWEI TECHNOLOGIES DÜSSELDORF GMBH, Munich Research Center

Build System Multi Repo Rules Get it!

Rules: Data of a Target (Example)

$ just analyse -C repos.json libhello
INFO: Requested target is [["@","","","libhello"],{}]
INFO: Result of target [["@","","","libhello"],{}]: {

"artifacts": {
"libhello.a": {"data":{"id":"0681d370b705849aabe780ed74877025be591085","path":"libhello.a"},"type":"ACTION"}

},
"provides": {
"compile-deps": {
"utils.hpp": {"data":{"path":"utils.hpp","repository":""},"type":"LOCAL"}

},
"link-args": [
"libhello.a",
"libutils.a"

],
"link-deps": {
"libutils.a": {"data":{"id":"58c3d737f349042c3a5c4af2c2f3ca1d461e883e","path":"libutils.a"},"type":"ACTION"}

}
},
"runfiles": {
"hello.hpp": {"data":{"path":"hello.hpp","repository":""},"type":"LOCAL"}

}
}

$

8 HUAWEI TECHNOLOGIES DÜSSELDORF GMBH, Munich Research Center

Build System Multi Repo Rules Get it!

Rule Language
Rules are mainly given by a functional expression defining this value; language

• variables, let*-binding, conditional expressions, . . .
• constructor functions for lists, maps, . . .
• standard operations: accessor functions, concatenation, iteration (lists/maps),
foldl, (conflict-free) map union, nub right, . . .

• Accessor functions to the data of the targets in the target fields
• actions are a means to define artifacts

• function returning a map of the output artifacts
• inputs: stage of input artifacts, command vector, environment, expected outputs
• mathematical function intensional equality on artifacts

9 HUAWEI TECHNOLOGIES DÜSSELDORF GMBH, Munich Research Center

Build System Multi Repo Rules Get it!

Rule Language
Rules are mainly given by a functional expression defining this value; language

• variables, let*-binding, conditional expressions, . . .
• constructor functions for lists, maps, . . .
• standard operations: accessor functions, concatenation, iteration (lists/maps),
foldl, (conflict-free) map union, nub right, . . .

• Accessor functions to the data of the targets in the target fields
• actions are a means to define artifacts

• function returning a map of the output artifacts
• inputs: stage of input artifacts, command vector, environment, expected outputs
• mathematical function intensional equality on artifacts

9 HUAWEI TECHNOLOGIES DÜSSELDORF GMBH, Munich Research Center

Build System Multi Repo Rules Get it!

Rule Language
Rules are mainly given by a functional expression defining this value; language

• variables, let*-binding, conditional expressions, . . .
• constructor functions for lists, maps, . . .
• standard operations: accessor functions, concatenation, iteration (lists/maps),
foldl, (conflict-free) map union, nub right, . . .

• Accessor functions to the data of the targets in the target fields

• actions are a means to define artifacts

• function returning a map of the output artifacts
• inputs: stage of input artifacts, command vector, environment, expected outputs
• mathematical function intensional equality on artifacts

9 HUAWEI TECHNOLOGIES DÜSSELDORF GMBH, Munich Research Center

Build System Multi Repo Rules Get it!

Rule Language
Rules are mainly given by a functional expression defining this value; language

• variables, let*-binding, conditional expressions, . . .
• constructor functions for lists, maps, . . .
• standard operations: accessor functions, concatenation, iteration (lists/maps),
foldl, (conflict-free) map union, nub right, . . .

• Accessor functions to the data of the targets in the target fields
• actions are a means to define artifacts

• function returning a map of the output artifacts
• inputs: stage of input artifacts, command vector, environment, expected outputs
• mathematical function intensional equality on artifacts

9 HUAWEI TECHNOLOGIES DÜSSELDORF GMBH, Munich Research Center

Build System Multi Repo Rules Get it!

Rule Language
Rules are mainly given by a functional expression defining this value; language

• variables, let*-binding, conditional expressions, . . .
• constructor functions for lists, maps, . . .
• standard operations: accessor functions, concatenation, iteration (lists/maps),
foldl, (conflict-free) map union, nub right, . . .

• Accessor functions to the data of the targets in the target fields
• actions are a means to define artifacts

• function returning a map of the output artifacts

• inputs: stage of input artifacts, command vector, environment, expected outputs
• mathematical function intensional equality on artifacts

9 HUAWEI TECHNOLOGIES DÜSSELDORF GMBH, Munich Research Center

Build System Multi Repo Rules Get it!

Rule Language
Rules are mainly given by a functional expression defining this value; language

• variables, let*-binding, conditional expressions, . . .
• constructor functions for lists, maps, . . .
• standard operations: accessor functions, concatenation, iteration (lists/maps),
foldl, (conflict-free) map union, nub right, . . .

• Accessor functions to the data of the targets in the target fields
• actions are a means to define artifacts

• function returning a map of the output artifacts
• inputs: stage of input artifacts, command vector, environment, expected outputs

• mathematical function intensional equality on artifacts

9 HUAWEI TECHNOLOGIES DÜSSELDORF GMBH, Munich Research Center

Build System Multi Repo Rules Get it!

Rule Language
Rules are mainly given by a functional expression defining this value; language

• variables, let*-binding, conditional expressions, . . .
• constructor functions for lists, maps, . . .
• standard operations: accessor functions, concatenation, iteration (lists/maps),
foldl, (conflict-free) map union, nub right, . . .

• Accessor functions to the data of the targets in the target fields
• actions are a means to define artifacts

• function returning a map of the output artifacts
• inputs: stage of input artifacts, command vector, environment, expected outputs
• mathematical function intensional equality on artifacts

9 HUAWEI TECHNOLOGIES DÜSSELDORF GMBH, Munich Research Center

Build System Multi Repo Rules Get it!

Equality: Intensional versus Extensional

$ cat TARGETS , "cmds": ["cat out.txt | tr a-z A-Z > upper.txt"]
{ "foo": }
{ "type": "generic" , "ALL":
, "outs": ["out.txt"] { "type": "install"
, "cmds": ["echo Hello World > out.txt"] , "files":
} {"foo.txt": "foo upper", "bar.txt": "bar upper", "baz.txt": "baz upper"}

, "bar": }
{ "type": "generic" }
, "outs": ["out.txt"] $
, "cmds": ["echo Hello World > out.txt"]
}

, "baz":
{ "type": "generic"
, "outs": ["out.txt"]
, "cmds": ["echo -n Hello > out.txt && echo ' World' >> out.txt"]
}

, "foo upper":
{ "type": "generic"
, "deps": ["foo"]
, "outs": ["upper.txt"]
, "cmds": ["cat out.txt | tr a-z A-Z > upper.txt"]
}

, "bar upper":
{ "type": "generic"
, "deps": ["bar"]
, "outs": ["upper.txt"]
, "cmds": ["cat out.txt | tr a-z A-Z > upper.txt"]
}

, "baz upper":
{ "type": "generic"
, "deps": ["baz"]
, "outs": ["upper.txt"]

10 HUAWEI TECHNOLOGIES DÜSSELDORF GMBH, Munich Research Center

Build System Multi Repo Rules Get it!

Equality: Intensional versus Extensional

$ cat TARGETS && just build -J 1 , "cmds": ["cat out.txt | tr a-z A-Z > upper.txt"]
{ "foo": }
{ "type": "generic" , "ALL":
, "outs": ["out.txt"] { "type": "install"
, "cmds": ["echo Hello World > out.txt"] , "files":
} {"foo.txt": "foo upper", "bar.txt": "bar upper", "baz.txt": "baz upper"}

, "bar": }
{ "type": "generic" }
, "outs": ["out.txt"] INFO: Requested target is [["@","","","ALL"],{}]
, "cmds": ["echo Hello World > out.txt"] INFO: Analysed target [["@","","","ALL"],{}]
} INFO: Export targets found: 0 cached, 0 uncached, 0 not eligible for caching

, "baz": INFO: Discovered 4 actions, 0 trees, 0 blobs
{ "type": "generic" INFO: Building [["@","","","ALL"],{}].
, "outs": ["out.txt"] INFO: Processed 4 actions, 1 cache hits.
, "cmds": ["echo -n Hello > out.txt && echo ' World' >> out.txt"] INFO: Artifacts built, logical paths are:
} bar.txt [4e3dffe834ac70600a7cb71fbc1f6a694c9d041f:12:f]

, "foo upper": baz.txt [4e3dffe834ac70600a7cb71fbc1f6a694c9d041f:12:f]
{ "type": "generic" foo.txt [4e3dffe834ac70600a7cb71fbc1f6a694c9d041f:12:f]
, "deps": ["foo"] $
, "outs": ["upper.txt"]
, "cmds": ["cat out.txt | tr a-z A-Z > upper.txt"]
}

, "bar upper":
{ "type": "generic"
, "deps": ["bar"]
, "outs": ["upper.txt"]
, "cmds": ["cat out.txt | tr a-z A-Z > upper.txt"]
}

, "baz upper":
{ "type": "generic"
, "deps": ["baz"]
, "outs": ["upper.txt"]

10 HUAWEI TECHNOLOGIES DÜSSELDORF GMBH, Munich Research Center

Build System Multi Repo Rules Get it!

Rules: More on Actions
• Consider actions as functions: better check they are!
 just rebuild: rebuild everything, comparing against cache

• possibly against a di�erent remote-exeuction endpoint
• possibly with a di�erent local-launcher prefix

(e.g., ["env", "LDPRELOAD=...", ..., "--"] to use libfaketime, disorderfs, . . .)

• Allow special non-pure “tainted” actions
. . . but require target/rules to declare (transitive) taintedness

• accept (but report) failure, provided required outputs are present,
but only cache on success, e.g., test actions (“we build the test report”)

• never cache, e.g., monitoring actions, check tests for flakyness

11 HUAWEI TECHNOLOGIES DÜSSELDORF GMBH, Munich Research Center

Build System Multi Repo Rules Get it!

Rules: More on Actions
• Consider actions as functions: better check they are!
 just rebuild: rebuild everything, comparing against cache

• possibly against a di�erent remote-exeuction endpoint
• possibly with a di�erent local-launcher prefix

(e.g., ["env", "LDPRELOAD=...", ..., "--"] to use libfaketime, disorderfs, . . .)
• Allow special non-pure “tainted” actions

. . . but require target/rules to declare (transitive) taintedness
• accept (but report) failure, provided required outputs are present,

but only cache on success, e.g., test actions (“we build the test report”)
• never cache, e.g., monitoring actions, check tests for flakyness

11 HUAWEI TECHNOLOGIES DÜSSELDORF GMBH, Munich Research Center

Build System Multi Repo Rules Get it!

Anonymous Targets

, "library":
{ "doc": ["A C++ libaray"]
, "target_fields": ["srcs", "hdrs", "private-hdrs", "deps", "proto"]
, /* ... */
, "anonymous":
{ "proto-deps":

{ "target": "proto"
, "provider": "proto"
, "rule_map":
{ "library": ["./", "proto", "library"]
, "service library": ["./", "proto", "service library"]
}

}
}

, /* ... */
}

• Interface API generation (think protobuf)
• abstract description of wire format,

possibly depending on other descriptions
• can generate APIs for various languages

? What is the value of such an interface target?
Should not have to know the languages that will use that format later!

 Take the dependency graph with just the files (and abstract rule labels) as value
. . . generate actual targets by binding rule labels to actual rules

• targets are not associated with a specific location anyway
• equality: intensional equality of node and locational equality of rules
→ no duplication if binding for the same language requested several times.

12 HUAWEI TECHNOLOGIES DÜSSELDORF GMBH, Munich Research Center

Build System Multi Repo Rules Get it!

Anonymous Targets

, "library":
{ "doc": ["A C++ libaray"]
, "target_fields": ["srcs", "hdrs", "private-hdrs", "deps", "proto"]
, /* ... */
, "anonymous":
{ "proto-deps":

{ "target": "proto"
, "provider": "proto"
, "rule_map":
{ "library": ["./", "proto", "library"]
, "service library": ["./", "proto", "service library"]
}

}
}

, /* ... */
}

• Interface API generation (think protobuf)
• abstract description of wire format,

possibly depending on other descriptions
• can generate APIs for various languages

? What is the value of such an interface target?
Should not have to know the languages that will use that format later!

 Take the dependency graph with just the files (and abstract rule labels) as value
. . . generate actual targets by binding rule labels to actual rules

• targets are not associated with a specific location anyway
• equality: intensional equality of node and locational equality of rules
→ no duplication if binding for the same language requested several times.

12 HUAWEI TECHNOLOGIES DÜSSELDORF GMBH, Munich Research Center

Build System Multi Repo Rules Get it!

Anonymous Targets

, "library":
{ "doc": ["A C++ libaray"]
, "target_fields": ["srcs", "hdrs", "private-hdrs", "deps", "proto"]
, /* ... */
, "anonymous":
{ "proto-deps":

{ "target": "proto"
, "provider": "proto"
, "rule_map":
{ "library": ["./", "proto", "library"]
, "service library": ["./", "proto", "service library"]
}

}
}

, /* ... */
}

• Interface API generation (think protobuf)
• abstract description of wire format,

possibly depending on other descriptions
• can generate APIs for various languages

? What is the value of such an interface target?
Should not have to know the languages that will use that format later!

 Take the dependency graph with just the files (and abstract rule labels) as value
. . . generate actual targets by binding rule labels to actual rules

• targets are not associated with a specific location anyway
• equality: intensional equality of node and locational equality of rules
→ no duplication if binding for the same language requested several times.

12 HUAWEI TECHNOLOGIES DÜSSELDORF GMBH, Munich Research Center

Build System Multi Repo Rules Get it!

Anonymous Targets
, "library":
{ "doc": ["A C++ libaray"]
, "target_fields": ["srcs", "hdrs", "private-hdrs", "deps", "proto"]
, /* ... */
, "anonymous":
{ "proto-deps":

{ "target": "proto"
, "provider": "proto"
, "rule_map":
{ "library": ["./", "proto", "library"]
, "service library": ["./", "proto", "service library"]
}

}
}

, /* ... */
}

• Interface API generation (think protobuf)
• abstract description of wire format,

possibly depending on other descriptions
• can generate APIs for various languages

? What is the value of such an interface target?
Should not have to know the languages that will use that format later!

 Take the dependency graph with just the files (and abstract rule labels) as value
. . . generate actual targets by binding rule labels to actual rules

• targets are not associated with a specific location anyway
• equality: intensional equality of node and locational equality of rules
→ no duplication if binding for the same language requested several times.

12 HUAWEI TECHNOLOGIES DÜSSELDORF GMBH, Munich Research Center

Build System Multi Repo Rules Get it!

Sources
• https://github.com/just-buildsystem/justbuild

• License: Apache 2.0

13 HUAWEI TECHNOLOGIES DÜSSELDORF GMBH, Munich Research Center

https://github.com/just-buildsystem/justbuild

	Build System
	Overview
	just example
	Remote Execution

	Multi Repo
	Introduction
	Roots

	Rules
	Rules
	Anonymous Targets

	Get it!
	Sources

