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Prelude: Rename queryd to luxid

• The renaming was already done in 2.9
as the first step of a big daemon refactoring

• that’s all for 2.9, but big plans. . .

• luxid will handle all luxi requests
• Ganeti jobs will run as processes
• masterd will go away
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luxid grows to the new role

All quiet in 2.10, but in 2.11. . .

• luxid learns all luxi commands

. . . and becomes the standard luxi interface

• Accepting jobs, luxid also writes to disk
and does queue management

• limit number of jobs to be run at once
cluster run-time tunable --max-running-jobs

• hand over to masterd for execution: PickupJob request
• watch job files for updates (via inotify; --max-tracked-jobs)

So queryd is gone. . .
if needed, would be easy to add an query-only option
(Speak out if you need it!)
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Enter wconfd

• Authorative copy of the configuarion still in masterd

but that is going away

 Add a new daemon, wconfd,
to keep track of the configuration and locks

• query/update RPC via domain socket
• changes written in batches and confirmed once on disk
• asynchronous replication

• Now fork/exec to start a new job
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locks.data and live-locks

• In the good old days, when masterd died all its threads died
No longer true!

 Persist lock status (as locks.data)
(only locally on master; if a node dies, all processes die)

Again, batch write, confirm once on disk

• A dying job also doesn’t kill wconfd

 Each lock owner must prove he is still alive
We use advisory locks for this, on “live-lock files”
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Pending requests and notify

• jobs need to wait for locks, administrated in a separate process

 Request to assign locks as soon as available

• notification via signal 1 (HUP)
• job still has to verify that the request was granted

• Extensional change:
a lock request will only be granted once all locks are available
(in particular, no partial assignments)

• To make better use of this feature,
lock requests of adjacent levels are collated (where possible)
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Opportunistic Locking

• new locking also allows for more complex requests
like “some of those locks, but at least n”

• Significantly reduces the number of ECODE TEMP NORES

(especially when lots of instances are requested simultaneously,
as NAL wouldn’t help there)
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News from the htools

hail, hspace, hbal, hsqueeze
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Metrics computation in instance allocation

Background: hspace performance, changed in 2.10.5

• On instance allocation, all possible placements are considered
and best scoring is taken

• Cluster score essentially is a sum of standard deviations
and most nodes remain unchanged

 Standard statistics (n,
∑

x ,
∑

x2) can easily be updated

or (n,
∑

x ,V ) to be closer to the old values

! still extensional change in behavior
as floating-point round effective serves as a tie breaker

Improvement: factor 10 on 80-node cluster
(so sorry for the overhead to all small-cluster owners)
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hspace --independent-groups

and hspace --accept-existing-errors

• hspace hypothetically adds instances
while keeping all nodes N+1-happy, then reports

• Corollary: if one node is not N+1-happy, capacity is 0

• Might be a bit too conservative an estimate
Estimate higher capacity by considering independent

• --independent-groups the node groups
• --accept-existing-errors the nodes

(might over-estimate!)



Daemon Refactoring htools

hspace --independent-groups

and hspace --accept-existing-errors

• hspace hypothetically adds instances
while keeping all nodes N+1-happy, then reports

• Corollary: if one node is not N+1-happy, capacity is 0

• Might be a bit too conservative an estimate
Estimate higher capacity by considering independent

• --independent-groups the node groups
• --accept-existing-errors the nodes

(might over-estimate!)



Daemon Refactoring htools

hspace --independent-groups

and hspace --accept-existing-errors

• hspace hypothetically adds instances
while keeping all nodes N+1-happy, then reports

• Corollary: if one node is not N+1-happy, capacity is 0

• Might be a bit too conservative an estimate
Estimate higher capacity by considering independent

• --independent-groups the node groups
• --accept-existing-errors the nodes

(might over-estimate!)



Daemon Refactoring htools

hbal --restricted-migration

• New option --restricted-migration added to htools
“This parameter disallows any replace-primary moves (frf), as
well as those replace-and-failover moves (rf) where the
primary node of the instance is not drained.”

• Use case: Updating the hypervisor
for minor updates live-migration is possible—but only
from the old to the new version

• Drain node
• hbal -L -X --evac-mode --restricted-migration
• update, undrain, drain next node
• hbal -L -X --evac-mode --restricted-migration
• . . .
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hsqueeze

• new htool, result of an informal discusion at last GanetiCon
(That’s why all those coffee breaks and dinners are essential!)

• Use case: clusters with huge usage variation
 Power down machines during low-usage times

• Intended to be run by cron; will act if free resources per node
• below --minimal-resources; power on nodes and balance

only nodes tagged htools:standby
• above --target-resources; balance, power down, and tag

if afterwards still above

Resources are measured in multiples of a standard instance

• Please report about your experience by next GanetiCon!
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