
Daemon Refactoring htools

Ganeti Deep Dive
Technical details of changes since last GanetiCon

(Part 1)

Klaus Aehlig <aehlig@google.com>

Sep 2, 2014



Daemon Refactoring htools

Daemon Refactoring

jobs as processes



Daemon Refactoring htools

Prelude: Rename queryd to luxid

• The renaming was already done in 2.9
as the first step of a big daemon refactoring

• that’s all for 2.9, but big plans. . .

• luxid will handle all luxi requests
• Ganeti jobs will run as processes
• masterd will go away



Daemon Refactoring htools

Prelude: Rename queryd to luxid

• The renaming was already done in 2.9
as the first step of a big daemon refactoring

• that’s all for 2.9, but big plans. . .

• luxid will handle all luxi requests
• Ganeti jobs will run as processes
• masterd will go away



Daemon Refactoring htools

Prelude: Rename queryd to luxid

• The renaming was already done in 2.9
as the first step of a big daemon refactoring

• that’s all for 2.9, but big plans. . .

• luxid will handle all luxi requests
• Ganeti jobs will run as processes
• masterd will go away



Daemon Refactoring htools

luxid grows to the new role

All quiet in 2.10, but in 2.11. . .

• luxid learns all luxi commands

. . . and becomes the standard luxi interface

• Accepting jobs, luxid also writes to disk
and does queue management

• limit number of jobs to be run at once
cluster run-time tunable --max-running-jobs

• hand over to masterd for execution: PickupJob request
• watch job files for updates (via inotify; --max-tracked-jobs)

So queryd is gone. . .
if needed, would be easy to add an query-only option
(Speak out if you need it!)



Daemon Refactoring htools

luxid grows to the new role

All quiet in 2.10, but in 2.11. . .

• luxid learns all luxi commands

. . . and becomes the standard luxi interface

• Accepting jobs, luxid also writes to disk
and does queue management

• limit number of jobs to be run at once
cluster run-time tunable --max-running-jobs

• hand over to masterd for execution: PickupJob request
• watch job files for updates (via inotify; --max-tracked-jobs)

So queryd is gone. . .
if needed, would be easy to add an query-only option
(Speak out if you need it!)



Daemon Refactoring htools

luxid grows to the new role

All quiet in 2.10, but in 2.11. . .

• luxid learns all luxi commands
. . . and becomes the standard luxi interface

• Accepting jobs, luxid also writes to disk
and does queue management

• limit number of jobs to be run at once
cluster run-time tunable --max-running-jobs

• hand over to masterd for execution: PickupJob request
• watch job files for updates (via inotify; --max-tracked-jobs)

So queryd is gone. . .
if needed, would be easy to add an query-only option
(Speak out if you need it!)



Daemon Refactoring htools

luxid grows to the new role

All quiet in 2.10, but in 2.11. . .

• luxid learns all luxi commands
. . . and becomes the standard luxi interface

• Accepting jobs, luxid also writes to disk
and does queue management

• limit number of jobs to be run at once
cluster run-time tunable --max-running-jobs

• hand over to masterd for execution: PickupJob request
• watch job files for updates (via inotify; --max-tracked-jobs)

So queryd is gone. . .
if needed, would be easy to add an query-only option
(Speak out if you need it!)



Daemon Refactoring htools

luxid grows to the new role

All quiet in 2.10, but in 2.11. . .

• luxid learns all luxi commands
. . . and becomes the standard luxi interface

• Accepting jobs, luxid also writes to disk
and does queue management

• limit number of jobs to be run at once
cluster run-time tunable --max-running-jobs

• hand over to masterd for execution: PickupJob request
• watch job files for updates (via inotify; --max-tracked-jobs)

So queryd is gone. . .
if needed, would be easy to add an query-only option
(Speak out if you need it!)



Daemon Refactoring htools

luxid grows to the new role

All quiet in 2.10, but in 2.11. . .

• luxid learns all luxi commands
. . . and becomes the standard luxi interface

• Accepting jobs, luxid also writes to disk
and does queue management

• limit number of jobs to be run at once
cluster run-time tunable --max-running-jobs

• hand over to masterd for execution: PickupJob request
• watch job files for updates (via inotify; --max-tracked-jobs)

So queryd is gone. . .
if needed, would be easy to add an query-only option
(Speak out if you need it!)



Daemon Refactoring htools

Enter wconfd

• Authorative copy of the configuarion still in masterd

but that is going away

 Add a new daemon, wconfd,
to keep track of the configuration and locks

• query/update RPC via domain socket
• changes written in batches and confirmed once on disk
• asynchronous replication

• Now fork/exec to start a new job



Daemon Refactoring htools

Enter wconfd

• Authorative copy of the configuarion still in masterd

but that is going away

 Add a new daemon, wconfd,
to keep track of the configuration and locks

• query/update RPC via domain socket
• changes written in batches and confirmed once on disk
• asynchronous replication

• Now fork/exec to start a new job



Daemon Refactoring htools

Enter wconfd

• Authorative copy of the configuarion still in masterd

but that is going away

 Add a new daemon, wconfd,
to keep track of the configuration and locks

• query/update RPC via domain socket
• changes written in batches and confirmed once on disk
• asynchronous replication

• Now fork/exec to start a new job



Daemon Refactoring htools

Enter wconfd

• Authorative copy of the configuarion still in masterd

but that is going away

 Add a new daemon, wconfd,
to keep track of the configuration and locks

• query/update RPC via domain socket
• changes written in batches and confirmed once on disk
• asynchronous replication

• Now fork/exec to start a new job



Daemon Refactoring htools

locks.data and live-locks

• In the good old days, when masterd died all its threads died
No longer true!

 Persist lock status (as locks.data)
(only locally on master; if a node dies, all processes die)

Again, batch write, confirm once on disk

• A dying job also doesn’t kill wconfd

 Each lock owner must prove he is still alive
We use advisory locks for this, on “live-lock files”



Daemon Refactoring htools

locks.data and live-locks

• In the good old days, when masterd died all its threads died
No longer true!

 Persist lock status (as locks.data)
(only locally on master; if a node dies, all processes die)

Again, batch write, confirm once on disk

• A dying job also doesn’t kill wconfd

 Each lock owner must prove he is still alive
We use advisory locks for this, on “live-lock files”



Daemon Refactoring htools

locks.data and live-locks

• In the good old days, when masterd died all its threads died
No longer true!

 Persist lock status (as locks.data)
(only locally on master; if a node dies, all processes die)
Again, batch write, confirm once on disk

• A dying job also doesn’t kill wconfd

 Each lock owner must prove he is still alive
We use advisory locks for this, on “live-lock files”



Daemon Refactoring htools

locks.data and live-locks

• In the good old days, when masterd died all its threads died
No longer true!

 Persist lock status (as locks.data)
(only locally on master; if a node dies, all processes die)
Again, batch write, confirm once on disk

• A dying job also doesn’t kill wconfd

 Each lock owner must prove he is still alive
We use advisory locks for this, on “live-lock files”



Daemon Refactoring htools

locks.data and live-locks

• In the good old days, when masterd died all its threads died
No longer true!

 Persist lock status (as locks.data)
(only locally on master; if a node dies, all processes die)
Again, batch write, confirm once on disk

• A dying job also doesn’t kill wconfd

 Each lock owner must prove he is still alive
We use advisory locks for this, on “live-lock files”



Daemon Refactoring htools

Pending requests and notify

• jobs need to wait for locks, administrated in a separate process

 Request to assign locks as soon as available

• notification via signal 1 (HUP)
• job still has to verify that the request was granted

• Extensional change:
a lock request will only be granted once all locks are available
(in particular, no partial assignments)

• To make better use of this feature,
lock requests of adjacent levels are collated (where possible)



Daemon Refactoring htools

Pending requests and notify

• jobs need to wait for locks, administrated in a separate process

 Request to assign locks as soon as available

• notification via signal 1 (HUP)
• job still has to verify that the request was granted

• Extensional change:
a lock request will only be granted once all locks are available
(in particular, no partial assignments)

• To make better use of this feature,
lock requests of adjacent levels are collated (where possible)



Daemon Refactoring htools

Pending requests and notify

• jobs need to wait for locks, administrated in a separate process

 Request to assign locks as soon as available

• notification via signal 1 (HUP)
• job still has to verify that the request was granted

• Extensional change:
a lock request will only be granted once all locks are available
(in particular, no partial assignments)

• To make better use of this feature,
lock requests of adjacent levels are collated (where possible)



Daemon Refactoring htools

Pending requests and notify

• jobs need to wait for locks, administrated in a separate process

 Request to assign locks as soon as available

• notification via signal 1 (HUP)
• job still has to verify that the request was granted

• Extensional change:
a lock request will only be granted once all locks are available
(in particular, no partial assignments)

• To make better use of this feature,
lock requests of adjacent levels are collated (where possible)



Daemon Refactoring htools

Opportunistic Locking

• new locking also allows for more complex requests
like “some of those locks, but at least n”

• Significantly reduces the number of ECODE TEMP NORES

(especially when lots of instances are requested simultaneously,
as NAL wouldn’t help there)



Daemon Refactoring htools

Opportunistic Locking

• new locking also allows for more complex requests
like “some of those locks, but at least n”

• Significantly reduces the number of ECODE TEMP NORES

(especially when lots of instances are requested simultaneously,
as NAL wouldn’t help there)



Daemon Refactoring htools

Opportunistic Locking

• new locking also allows for more complex requests
like “some of those locks, but at least n”

• Significantly reduces the number of ECODE TEMP NORES

(especially when lots of instances are requested simultaneously,
as NAL wouldn’t help there)



Daemon Refactoring htools

News from the htools

hail, hspace, hbal, hsqueeze



Daemon Refactoring htools

Metrics computation in instance allocation

Background: hspace performance, changed in 2.10.5

• On instance allocation, all possible placements are considered
and best scoring is taken

• Cluster score essentially is a sum of standard deviations
and most nodes remain unchanged

 Standard statistics (n,
∑

x ,
∑

x2) can easily be updated

or (n,
∑

x ,V ) to be closer to the old values

! still extensional change in behavior
as floating-point round effective serves as a tie breaker

Improvement: factor 10 on 80-node cluster
(so sorry for the overhead to all small-cluster owners)



Daemon Refactoring htools

Metrics computation in instance allocation

Background: hspace performance, changed in 2.10.5

• On instance allocation, all possible placements are considered
and best scoring is taken

• Cluster score essentially is a sum of standard deviations
and most nodes remain unchanged

 Standard statistics (n,
∑

x ,
∑

x2) can easily be updated

or (n,
∑

x ,V ) to be closer to the old values

! still extensional change in behavior
as floating-point round effective serves as a tie breaker

Improvement: factor 10 on 80-node cluster
(so sorry for the overhead to all small-cluster owners)



Daemon Refactoring htools

Metrics computation in instance allocation

Background: hspace performance, changed in 2.10.5

• On instance allocation, all possible placements are considered
and best scoring is taken

• Cluster score essentially is a sum of standard deviations
and most nodes remain unchanged

 Standard statistics (n,
∑

x ,
∑

x2) can easily be updated
or (n,

∑
x ,V ) to be closer to the old values

! still extensional change in behavior
as floating-point round effective serves as a tie breaker

Improvement: factor 10 on 80-node cluster
(so sorry for the overhead to all small-cluster owners)



Daemon Refactoring htools

hspace --independent-groups

and hspace --accept-existing-errors

• hspace hypothetically adds instances
while keeping all nodes N+1-happy, then reports

• Corollary: if one node is not N+1-happy, capacity is 0

• Might be a bit too conservative an estimate
Estimate higher capacity by considering independent

• --independent-groups the node groups
• --accept-existing-errors the nodes

(might over-estimate!)



Daemon Refactoring htools

hspace --independent-groups

and hspace --accept-existing-errors

• hspace hypothetically adds instances
while keeping all nodes N+1-happy, then reports

• Corollary: if one node is not N+1-happy, capacity is 0

• Might be a bit too conservative an estimate
Estimate higher capacity by considering independent

• --independent-groups the node groups
• --accept-existing-errors the nodes

(might over-estimate!)



Daemon Refactoring htools

hspace --independent-groups

and hspace --accept-existing-errors

• hspace hypothetically adds instances
while keeping all nodes N+1-happy, then reports

• Corollary: if one node is not N+1-happy, capacity is 0

• Might be a bit too conservative an estimate
Estimate higher capacity by considering independent

• --independent-groups the node groups
• --accept-existing-errors the nodes

(might over-estimate!)



Daemon Refactoring htools

hbal --restricted-migration

• New option --restricted-migration added to htools
“This parameter disallows any replace-primary moves (frf), as
well as those replace-and-failover moves (rf) where the
primary node of the instance is not drained.”

• Use case: Updating the hypervisor
for minor updates live-migration is possible—but only
from the old to the new version

• Drain node
• hbal -L -X --evac-mode --restricted-migration
• update, undrain, drain next node
• hbal -L -X --evac-mode --restricted-migration
• . . .



Daemon Refactoring htools

hbal --restricted-migration

• New option --restricted-migration added to htools
“This parameter disallows any replace-primary moves (frf), as
well as those replace-and-failover moves (rf) where the
primary node of the instance is not drained.”

• Use case: Updating the hypervisor
for minor updates live-migration is possible—but only
from the old to the new version

• Drain node
• hbal -L -X --evac-mode --restricted-migration
• update, undrain, drain next node
• hbal -L -X --evac-mode --restricted-migration
• . . .



Daemon Refactoring htools

hbal --restricted-migration

• New option --restricted-migration added to htools
“This parameter disallows any replace-primary moves (frf), as
well as those replace-and-failover moves (rf) where the
primary node of the instance is not drained.”

• Use case: Updating the hypervisor
for minor updates live-migration is possible—but only
from the old to the new version

• Drain node
• hbal -L -X --evac-mode --restricted-migration
• update, undrain, drain next node
• hbal -L -X --evac-mode --restricted-migration
• . . .



Daemon Refactoring htools

hsqueeze

• new htool, result of an informal discusion at last GanetiCon
(That’s why all those coffee breaks and dinners are essential!)

• Use case: clusters with huge usage variation
 Power down machines during low-usage times

• Intended to be run by cron; will act if free resources per node
• below --minimal-resources; power on nodes and balance

only nodes tagged htools:standby
• above --target-resources; balance, power down, and tag

if afterwards still above

Resources are measured in multiples of a standard instance

• Please report about your experience by next GanetiCon!



Daemon Refactoring htools

hsqueeze

• new htool, result of an informal discusion at last GanetiCon
(That’s why all those coffee breaks and dinners are essential!)

• Use case: clusters with huge usage variation
 Power down machines during low-usage times

• Intended to be run by cron; will act if free resources per node
• below --minimal-resources; power on nodes and balance

only nodes tagged htools:standby
• above --target-resources; balance, power down, and tag

if afterwards still above

Resources are measured in multiples of a standard instance

• Please report about your experience by next GanetiCon!



Daemon Refactoring htools

hsqueeze

• new htool, result of an informal discusion at last GanetiCon
(That’s why all those coffee breaks and dinners are essential!)

• Use case: clusters with huge usage variation
 Power down machines during low-usage times

• Intended to be run by cron; will act if free resources per node
• below --minimal-resources; power on nodes and balance

only nodes tagged htools:standby
• above --target-resources; balance, power down, and tag

if afterwards still above

Resources are measured in multiples of a standard instance

• Please report about your experience by next GanetiCon!



Daemon Refactoring htools

hsqueeze

• new htool, result of an informal discusion at last GanetiCon
(That’s why all those coffee breaks and dinners are essential!)

• Use case: clusters with huge usage variation
 Power down machines during low-usage times

• Intended to be run by cron; will act if free resources per node
• below --minimal-resources; power on nodes and balance

only nodes tagged htools:standby
• above --target-resources; balance, power down, and tag

if afterwards still above

Resources are measured in multiples of a standard instance

• Please report about your experience by next GanetiCon!


	Daemon Refactoring
	Luxid
	WConfD
	Locking

	htools
	Instance Allocation
	hspace
	hbal
	hsqueeze


