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Abstract

Consider the following variant of quantified propositional logic. A
new, parallel extension rule is introduced. This rule is aware of inde-
pendence of the introduced variables. The obtained calculus has the
property that heights of derivations correspond to heights of Boolean
circuits. Adding an uninterpreted predicate on bit-strings, akin to an
oracle in relativised complexity classes, this statement can be made
precise. Consider proofs of the statement that a given circuit can be
evaluated. The most shallow of these proofs in the said calculus has
a height that is, up to an additive constant, the height of the circuit
considered.

The main tool for showing lower bounds on proof heights is a vari-
ant of an iteration principle studied by Takeuti. This reformulation
might be of independent interest, as it allows for polynomial size for-
mulae in the relativised language that require proofs of exponential
height.

An arithmetical formulation of the iteration principle yields a
strength measure for theories in the language of relativised two-sorted
Bounded Arithmetic. This measure provides all the separations Dy-
namic Ordinal Analysis provides, but extends to theories where the
latter fails to produce any separation, due to the overhead of first-order
(i.e., sharply-bounded) cut elimination.

The new measure can also be used to investigate relativised the-
ories for small complexity classes that are not necessarily based on
restricted forms of induction. In particular, it can be used for theories
that axiomatise computations, most prominently, deterministic and
non-deterministic space computations, and the evaluation of circuits.

Before studying relativised versions of these theories it is necessary
to define relativised versions of the corresponding complexity classes.
New definitions of relativised complexity classes within polynomial
time are introduced. As opposed to the existing definitions, they have
the property that all known inclusions are preserved, and that every
complexity class is closed under composition.
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1 Introduction and Related Work

This thesis is about using methods of mathematical logic to study problems
in computational complexity.

Even though the most prominent measures of complexity are time and
space, quite early in the history of complexity theory, logical concepts have
been used to describe computation. For example, the polynomial-time hi-
erarchy [59] essentially is a hierarchy of quantifier alternations. It serves as
a complexity-theoretic analogue of the arithmetical hierarchy of degrees of
undecidability. It extends Fagin’s characterisation [23] of NP as the set of
problems definable in second-order existential logic.

The main focus of this thesis are complexity classes that are “small” in
the sense that they are contained within polynomial time. These classes are
getting increasingly more attention, as, with the increase in computational
power, bigger and bigger problems can be solved; with the size of problems
manageable nowadays, just stating that a task can be solved in time “poly-
nomial in the size of the input” is too coarse a notion. It is often also of
importance whether a problem can be efficiently parallelised.

In this thesis we mainly investigate the complexity classes L, NL, ACk,
and NCk with particular emphasis on computation relative to an oracle. For
these relativised classes we show full separation. Despite not being a new
result, the method chosen has several benefits, and results of independent
interest are shown on the way. For example, we will obtain all separations
by a uniform principle. Also, by linking to formal theories, we open up the
possibility to also calibrate mathematical arguments on this computation-
related scale.

Bounded Arithmetic as a Link Between Computational

Complexity and Mathematical Logic

Bounded Arithmetic is a link between computational complexity and math-
ematical logic. The object of study are formal arithmetical theories, usually
in some form or another restrictions of Peano Arithmetic, and therefore ob-
jects well-studied in mathematical logic. On the other hand, we can study
their definable functions: Consider a theory T and assume that T proves
a statement of the form ∀x∃yϕ(x, y). This statement asserts the existence
of a (Skolem) function. Assuming the theory is sound, such a function has
to exist. So one can ask which complexity is needed to compute a possible
Skolem function—if there is a computable one at all. Now varying ϕ over
a (syntactically defined) class F of formulae, one obtains the F -definable
functions of T .
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1 INTRODUCTION AND RELATED WORK

Particularly interesting are choices of T and F where the F -definable
functions of T form some well-known complexity class. The first example
of such theories was introduced by Buss [10]. He introduced a hierarchy
Si

2 of first-order theories where the Σb
i+1-definable functions of Si+1

2 are pre-
cisely [10] the functions in the polynomial-time closure of the i’th level of
the polynomial-time hierarchy [59]. Moreover, some form of converse holds
as well [40]. The hierarchy of theories Si

2 collapses, i.e., S2 =
⋃

i S
i
2 is finitely

axiomatisable, if and only if the polynomial-time hierarchy collapses provably
in S2.

Recently, theories related to other complexity classes, including small
ones, have been developed as well [14, 15, 16, 18, 19]. They are best pre-
sented [66] in the setting of finite model theory [33]. In other words, rather
than building on standard first-order logic, they use a setting akin to second-
order arithmetic. The objects of discourse belong to one of two sorts. One of
them is the sort of natural numbers. We should think of this sort as ranging
over indices into some data structure. The main data objects, and also the
input to functions, is represented by the second sort, that of finite sets. Finite
sets, in this context, are most naturally thought of as bit-strings. The ele-
ments of the set describe which bits are set in the represented string. Such
a multi-sorted approach also extends well [58] to much bigger complexity
classes like PSPACE.

Having a connection between formal theories and computational complex-
ity can serve several purposes. On a mathematical side, one can take well-
known mathematical theorems, like a discrete version of the Jordan curve
theorem, and study [47] the computational complexity inherent in this the-
orem. The way this is achieved is by identifying the smallest theory (of a
set of theories strongly linked to complexity in the above-described sense) in
which this theorem is provable. The notion of “smallest” can be made more
precise than just failing to prove it in any smaller theory; one can actually
show that all the axioms of this smallest theory can, over some very weak
base theory, be reobtained by just taking the theorem in question as an ax-
iom. This style of connecting mathematical statements and computational
complexity is known as “low-level reverse mathematics” [46].

On the computational complexity side, one can use this connection to take
advantage of the tools of mathematical logic to learn about the complexity
classes in question. If it can be shown that some F -definable functions of T
are not F -definable in some other theory T ′, then the complexity classes cor-
responding to the F -definable functions of T and T ′ are separated. Areas of
mathematical logic that are suitable to separate formal arithmetical theories
include model theory and proof theory.
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The Proof-Theoretic Method

In this thesis we use a traditional proof-theoretic approach to study for-
mal theories and, ultimately, show that certain statements are not derivable
in some formal theory. Proofs in arithmetical systems are translated into
propositional logic and the possible heights of these proofs are studied.

In traditional ordinal-informative proof theory, an arithmetical proof is
translated into a single propositional proof with infinitely branching rules and
transfinite (but well-founded) height. This proof is then transformed into a
proof with the same propositional formula as conclusion but some desirable
structural properties. Usually one demands that the transformed proof be
cut-free, or that at most cuts of a certain logical form be present. Depending
on the arithmetical theory we started with, we can find an ordinal as a bound
on the height of the transformed translated proof. If this bound is tight, then
this ordinal is the so-called “proof-theoretic ordinal” of that theory.

On the other hand, there are statements Aα such that any cut-free proof
of (the propositional translation of) Aα in propositional logic requires a proof
of height at least the ordinal α. The most prominent such statement is the
principle of transfinite induction up to α. Now, if α is bigger than the proof
theoretic ordinal of that theory, we have an explicit example of a statement
not provable in the given theory.

In the context of Bounded Arithmetic one considers arithmetical proofs of
formulae A(x) with a distinguished free variable x. They are then translated
into families of propositional proofs [50] of the propositional statements A(n)
for n ∈ N. Each individual proof is of finite height and contains only finitely-
branching rules; the role of the transfinite height is taken over by the growth
of the height of these proofs [6], as depending on n.

In order to show unprovability results, we need some substitute for what
the principle of transfinite induction was in ordinal-informative proof theory.
In other words, we need a formula A(x) such that any (possibly non-uniform)
family of proofs for (the propositional translations of) A(n) for n ∈ N has
a height growing fast with n. One of the contributions of this thesis is to
provide such a principle with a clear computational meaning: the sequential
iteration principle. This (true) principle states that for a function F : [2n] →
[2n] the function can be iterated, i.e., the value F f(n)(0) exists. “Existence”
is formulated by asserting that there is some y such that (f(n), y) is in the
graph of the iteration ℓ 7→ F ℓ(0), where that graph is axiomatised in the
obvious step-by-step manner. Here f(n) ∈ {0, 1, . . .2n − 1} is some number
depending on n. Propositional proofs of this statement will require a height of
f(n). Now, if f is sufficiently fast growing we obtain the desired unprovability
results.

3



1 INTRODUCTION AND RELATED WORK

Iteration as a Sequential Principle

The iteration principle has a computational meaning in terms of computation
time. Intuitively, one can only start evaluating F (F (0)) once F (0) has been
obtained. Similarly, only once the computation of F (F (0)) is completed,
one can start computing F (F (F (0))), and so on. So iteration is inherently
sequential and therefore a good indicator of how much time a computation
can use up. Note that for this intuition to hold true, it is essential that
the domain and range of F are sufficiently big—otherwise, one could exploit
parallelism to precompute F at all possible values. In our formulation of this
principle, domain and range are exponentially big. This suffices, as we only
consider models of computations where the amount of steps done in parallel
is polynomially bounded.

To formally justify our intuition, we study the height of a circuit needed to
compute the F (ℓ)(0). It will turn out (Proposition 4.1.8 and Theorem 4.1.9)
that this height is precisely ℓ. So we have found our link to parallel compu-
tation, as circuits are generally considered an appropriate model of parallel
computation [12, 60, 13] where the height coincides with computation time.

In that way, the iteration principle allows one to assign to every com-
plexity class—and, in fact, even to every mathematical theory—the amount
of sequentiality available. For complexity classes this is just another, how-
ever interesting, scale on which to compare them. For other mathematical
theories, e.g., those based on induction principles, this is a precise way to
understand the computational power inherent in their arguing principles.

Relativised Complexity

In the iteration principle we used a function F : [2n] → [2n]. Such an object
is given by n · 2n many bits. In other words, an exponential amount of
information is needed to describe such an object. That much information
cannot be stored by the complexity classes we consider, and it cannot be
given as input in the usual sense either. So we need other means of talking
about F .

On the side of arithmetical theories we follow standard proof-theoretic
practise and add an uninterpreted relation symbol. Note that a predicate of
strings of length n log(n) contains precisely n · 2n many bits of information.

On the side of computation, a predicate on strings of roughly the size of
the input usually is given as an oracle. We think of an oracle as a device
where a computed string is given as a question and a yes-or-no answer is
returned. The future computation may (and usually will) depend on the
answer, including further questions asked. The oracle, however, is committed
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to give an answer only depending on the question; it may not depend on the
history of questions.

There is a well-established theory of computation relative to an oracle
for the complexity classes polynomial time and bigger. These complexity
classes have in common that the machine can store the question to be asked
to the oracle. For classes like logarithmic space, this is no longer the case. So
some extra care has to taken when defining relativised computation for small
complexity classes. There do exist some approaches in the literature [64, 65],
but none of them is satisfactory in the sense that they preserve the known
inclusions and closure properties.

This thesis will therefore, following a joint article with Stephen Cook and
Phuong Nguyen [4], introduce new definitions. These new definitions of small
complexity classes relative to an oracle preserve the known inclusions, and
every complexity class is closed under composition. Such a definition did not
exist before. Moreover, NLα will turn out to be closed under complement
and contained in deterministic space O(log2(n)).

Propositional Logic

As explained, a major part of a proof theoretic analysis is working in propo-
sitional logic. Doing cut-elimination for a sufficiently involved calculus of
infinitary propositional logic can be a major task—even more if the height
of the transformed proof has to be optimal.

This thesis devotes a non-negligible part to studying a calculus for rela-
tivised propositional logic. On the one hand, developing a suitable calculus
and studying its properties is a necessity for the proof-theoretic study of the
theories for the complexity classes we are interested in. On the other hand,
this study is of independent interest. It will turn out that the heights of
proofs in our propositional calculus, called AC0-Tait, have a tight connection
to boolean circuits. More precisely, consider a (relativised) boolean circuit
and the formal statement (in propositional logic) that it can be evaluated.
This statement will be provable in AC0-Tait. However, every such proof will
require a height that is at least equal to that of the circuit. This result was
first presented in a joint article with Arold Beckmann [2].

In this way, we have a logical calculus that is strongly related to parallel
computation. Such a connection might become another approach of a bet-
ter understanding the complexity of parallel computation from a theoretical
point of view. In any case, using semantics closely related to machine models
of computation has proven useful already [1].

5



1 INTRODUCTION AND RELATED WORK

Outline of Contents

This thesis is organised as follows. As all our discourse is about computa-
tion relative to an oracle, we first (in Section 2) investigate, following a joint
article with Stephen Cook and Phuong Nguyen [4], a sensible notion of rel-
ative computation for small complexity classes. It seems that no completely
satisfactory definition has been given in the literature [64, 65] before.

Then, a calculus for propositional logic, AC0-Tait, is introduced (in Sec-
tion 3). It is shown (in Section 4) that proofs in this calculus have a tight
connection to circuit heights.

We then introduce (in Section 5) various theories of Bounded Arithmetic
and study (in Section 6) their propositional translation into the said calculus.
Computing (in Section 7) the “sequential strength” shows that it yields the
expected heights, that is, that of the corresponding circuit. We also note that
the “sequential strength” shows the same picture for the theories defined
via restricted induction, as does the “dynamic ordinal” [7]. Moreover, it
does so without suffering the blindness of the latter in small growth rates.
“Dynamic ordinal analysis” requires the polynomial (i.e., poly-logarithmic in
the value) overhead of first-order cut elimination. This overhead is not needed
to compute the “sequential strength”. Partial cut elimination suffices for the
Boundedness Lemma for AC0-Tait (Theorem 4.2.17). So our new measure
has all the benefits of the existing one, but additionally strictly extends it.
It also has the additional advantage of having a clear complexity-theoretic
meaning in the realm of boolean circuits.
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2 Relativised Complexity Classes

Computational complexity classifies problems according to the amount of
computational resources (like space, (parallel) time, and similar) that suf-
fice to solve them. Absolute separations of most computational complexity
classes currently seem out of reach. However, by relativising computation
to an oracle as additional parameter most questions of separation can be
settled—even though not in a unique way [5].

In the present work, we mainly think of the oracle as an additional, very
large, input to the computation. Very often we consider problems where the
task is to find out some property of the oracle. Therefore it will make sense
to consider problems without input in the traditional sense.

The purpose of this section, which follows work by Aehlig, Cook, and
Nguyen [4], is to formally define a relativised notion for various models of
computation and to introduce a sensible notion of relativised versions of
known small complexity classes. This is not a trivial task, as the complexity
classes ought to be closed under composition and known inclusions ought to
relativise.

2.1 Preliminaries

Notation 2.1.1. By N = {0, 1, 2, . . .} we denote the set of natural numbers.

Notation 2.1.2. If n is a natural number, we write [n] as an abbreviation
for the set {0, 1, . . . , n− 1}. That is, in set theoretic terms, [n] = n.

Notation 2.1.3. If A and B are sets we denote by f : A → B that f is a
(total) function from A to B. In other words, f ⊂ A×B, such that for each
x ∈ A there is precisely one y ∈ B such that 〈x, y〉 ∈ f . We write f(x) = y
to denote that 〈x, y〉 ∈ f .

If f is a function, by dom(f) = {x | ∃y.〈x, y〉 ∈ f} we denote its domain
and by rng(f) = {f(x) | x ∈ dom(f)} its range.

Notation 2.1.4. If A and B are sets we denote by f : A ⇀ B that f is a
partial function from A to B. In other words, f is a function, its domain
dom(f) is a subset of A and its range rng(f) is a subset of B.

Definition 2.1.5 (P(A)). If A is a set, then by P(A) = {B | B ⊂ A} we
denote the power set of A.

Notation 2.1.6. We use f, g, and h to range over (arbitrary) functions from
the natural numbers to the natural numbers.

7



2 RELATIVISED COMPLEXITY CLASSES

Notation 2.1.7 (n). We use n to denote the identity on the natural numbers;
that is, n(n) = n.

Notation 2.1.8 (f + g, f · g, fg). Sum, product, and exponentiation of
functions are defined to be the point-wise sum, product, or exponentia-
tion. In other words, (f + g)(n) = f(n) + g(n), (f · g)(n) = f(n) · g(n),
and (fg)(n) = (f(n))g(n).

Notation 2.1.9 (f(g)). By f(g) we denote the composition f ◦ g of the func-
tions f and g. So f(g)(n) = f(g(n)). In particular, f(n) is the same as f.

Definition 2.1.10 (f (k)). If f : A → A is a function from a set into itself
and k ∈ N a natural number, we define the k’th iterate f (k) of f by induction
on k as follows.

f (0) is the identity on A, that is, f (0)(a) = a. Moreover, f (k+1) = f ◦ f (k),
that is f (k+1)(a) = f(f (k)(a)).

Notation 2.1.11. If there is no risk of confusion with the pointwise opera-
tions, we write fk as a shorthand for f (k).

Notation 2.1.12. If we use a natural number in a context where a function
is expected, we identify this natural number with the corresponding constant
function. For example (2n + 1)(n) = 2n+ 1.

Definition 2.1.13 (f ≤ g). Functions are partially ordered by the point-wise
order, that is, we write f ≤ g to denote ∀n(f(n) ≤ g(g)).

Definition 2.1.14 (f ≤e g). By f ≤e g we denote that g eventually dominates
f. In other words, f ≤e g if and only if ∃N∀n ≥ N(f(n) ≤ g(n)).

Notation 2.1.15. We also use Notations 2.1.8 and 2.1.12, and Defini-
tions 2.1.13 and 2.1.14 for functions from the naturals to the non-negative
reals.

Remark 2.1.16. It is a well known fact, that the set {nc + c | c ∈ N} is con-
final in the set of polynomial functions; in other words, for every polynomial
function p there is a c ∈ N such that p ≤ nc + c.

Notation 2.1.17. We use p, q to range over polynomial functions.

Definition 2.1.18 (O(f)). If f is a function from N to N then we define the
set O(f) of functions of growth at most f as follows.

O(f) = {g | ∃C ∈ N. g ≤e C · f}

8



2.1 Preliminaries

Remark 2.1.19. Unfolding Definition 2.1.18 we get

O(f) = {g | ∃C ∈ N∃N ∈ N∀n ≥ N(g(n) ≤ C · f(n))} .

Remark 2.1.20. If f ≥ 1 then

O(f) = {g | ∃C. g ≤ C · f} .

Proof. Let g ∈ O(f) and let N,C be as in Definition 2.1.18. Let M be the
maximum of the “exceptional values”, that is, set M = max{g(n) | n ≤ N}.
Then for all n ∈ N we have g(n) ≤ (C + M) · f(n); in deed, for n < N , we
have g(n) ≤ M ≤ (C +M) ≤ (C +M) · f(n) since f(n) ≥ 1, and for n ≥ N
we have g(n) ≤ C · g(n) ≤ (C +M) · g(n).

Notation 2.1.21 (f + M , M · g, fM). We extend the pointwise operations
(Notation 2.1.8) to operations on sets in the obvious way, tacitly adding a
downwards closure with respect to eventual domination. That is, if M is a
set of functions from N to N, then we define the following.

f +M = {h | ∃g ∈M. h ≤e f + g}
M · f = {h | ∃g ∈M. h ≤e g · f}
fM = {h | ∃g ∈M. h ≤e fg}

Remark 2.1.22. Continuing Remark 2.1.16 we observe that the polynomi-
ally bounded functions are precisely the functions nO(1).

Definition 2.1.23 (log). We use the following approximation of the binary
logarithm as a function from N to N.

log(n) = min{k | 2k ≥ n}

Proposition 2.1.24. log is a monotone function and n ≤ 2log(n).

Proof. Immediate from our Definition 2.1.23.

Proposition 2.1.25. log(2n) ≤ log(n) + 1

Proof. By Proposition 2.1.24 we know n ≤ 2log(n), so 2n ≤ 2 · 2log(n) =
2log(n)+1, hence log(n) + 1 is an upper bound on log(2n).

Proposition 2.1.26. log(2k) = k

Proof. Trivially 2k ≥ 2k. Moreover, for k′ < k we have 2k′

< 2k. So k is
indeed the smallest n with 2n ≥ 2k. In other words, log(2k) = k.

Proposition 2.1.27. If n ≥ 2 then 2log(n) < 2n.

9



2 RELATIVISED COMPLEXITY CLASSES

Proof. Let k = log(n). Since n ≥ 2 we know that log(k) > 0 as 20 = 1 < 2.
From the minimality of k we know that 2k−1 < n, hence 2k = 2·2k−1 < 2n.

Corollary 2.1.28. 2log ∈ O(n)

Proof. This is a consequence of Proposition 2.1.27.

Lemma 2.1.29. log(nc) ≤ c log n

Proof. n ≤ 2log n by Proposition 2.1.24. Hence nc ≤ (2log n)c = 2c log n. So
c logn ≥ min{k | 2k ≥ nc} = log(nc).

Corollary 2.1.30. log(nc) ∈ O(log(n))

Proof. This is an immediate consequence of Lemma 2.1.29.

Lemma 2.1.31. Let n ≥ 2 and c ∈ N. If n ≥ 2c then c logn ≤ log(nc+1).

Proof. Let k = log(n). Then k is minimal such that 2k ≥ n and therefore
2k−1 < n; note that by our assumption n ≥ 2 we know that k ≥ 1 and
therefore k−1 is a well-defined natural number. We get 2kc−c = (2k−1)c < nc,
so 2kc = 2c · 2kc−c < 2cnc ≤ n · nc = nc+1. Therefore, c logn = kc <
log(nc+1).

Corollary 2.1.32. log(nO(1)) = O(log(n))

Proof. The inclusion log(nO(1)) ⊆ O(log(n)) is a consequence of Lemma 2.1.29.
The inclusion O(log(n)) ⊆ log(nO(1)) follows from Lemma 2.1.31.

Definition 2.1.33 (2k). By induction on k we define a function 2k : N → N

as follows. 20 = n and 2k+1 = 22k .

Notation 2.1.34. If A is a set, then by A∗ we denote the set of all finite
sequences over elements of A. The empty sequence is denoted by ε. The set
of all finite sequences of length n over elements of A is denoted by An.

Example 2.1.35. ∅∗ = {ε}

Definition 2.1.36 (Language over A). The languages over A are defined to
be the subsets of A∗.

Remark 2.1.37. Obviously, A∗ =
⋃

n∈N
An and this union is disjoint. This

is a useful principle to define functions with domain A∗; they can be defined
by defining separate functions for each input length. This is, for example,
done in Definition 2.4.3.

10



2.2 The Dynamic Aspect of Complexity

Definition 2.1.38 (Strings Coding a Natural Number). We say that w =
aℓ . . . a1a0 ∈ {0, 1}∗ codes n ∈ N if n =

∑ℓ
i=0 ai2

i.

Example 2.1.39. ε, 0, 00, 000, . . . are all codes of the natural number 0.
Possible codes of the natural number 1 are 1, 01, 001, and so on.

Proposition 2.1.40. If i ∈ [n] then there is precisely one string i of length
log(n) that codes i.

Proof. By Proposition 2.1.24 we know that i < n ≤ 2log(n). Hence there is
a code of that lengths. Uniqueness follows by the fact that different binary
representations of a number only differ in leading 0s.

Notation 2.1.41. If the underlying size parameter n is understood from the
context, we use j to denote the unique string of length log(n) coding j that
is shown to exist in Proposition 2.1.40.

Also, if n is understood from the context, we identify strings over {0, 1}
or strings of truth values (reading “true” as 1 and “false” as 0) with natural
numbers they code according to Definition 2.1.38 and vice versa.

Remark 2.1.42. Notation 2.1.41 should not be confused with the notation
i of numerals in arithmetical theories, introduced in Definition 5.1.10. As,
however, we refrain from using Notation 2.1.41 within formulae in the lan-
guage L2(α) of Bounded Arithmetic (see Definition 5.1.1) no confusion can
arise.

Definition 2.1.43. If Σ is a set with 0, 1 ∈ Σ, and if A,B ⊂ Σ∗ are languages
over Σ, then their join A⊕B is defined to be

A⊕ B = {0w | w ∈ A} ∪ {1w | w ∈ B} .

2.2 The Dynamic Aspect of Complexity

Computational complexity is concerned with the question of how much the
“difficulty” of a problem grows (in the sense of resources needed, like time or
space) if the size of the problem grows. So, all the problems computational
complexity is concerned with have an underlying “size parameter”. In the
same way as the notion of a random variable appropriately “hides” the un-
derlying probability space we develop in this subsection a general notion of
a “dynamic object” that appropriately hides the underlying size parameter.

Definition 2.2.1 (Sized Set). A sized set is a pair (S, | · |) consisting of a
set S and a size function | · | : S → N from the set to the natural numbers.

11



2 RELATIVISED COMPLEXITY CLASSES

Notation 2.2.2. If the size function | · | is understood from the context,
we also call S a sized set, expressing that we’re talking about the sized set
(S, | · |).

Definition 2.2.3 (Dynamic S-Object). If S is a sized set then a dynamic
S-object is a function a : N → S. Its growth rate |a| is the function |a| : N →
N, n 7→ |a(n)|.

Notation 2.2.4. Following usual conventions, we call a function a : N → S
also a family if S-objects and write an as a shorthand for a(n). In particular
we use the notations a : N → S and (an)n∈N synonymous, if it is understood
that an ∈ S.

Definition 2.2.5 (Polynomial Size). A dynamic object a is said to be of
polynomial size, if its growth rate is polynomially bounded, that is, if |a| ∈
nO(1).

Definition 2.2.6 (Constant Size). A dynamic object a is said to be of con-
stant size, if its growth rate is. That is, a is of constant size if |a| ∈ O(1).

Definition 2.2.7 (Exponential Size). A dynamic object a is said to be of
at least exponential size, if its growth rate dominates some exponentially
growing function, that is, if for some ε > 0 it is the case that (1 + ε)n ≤e |a|.

Remark 2.2.8. When working with small complexity classes, there is hardly
any benefit in knowing that some measure is bounded by an exponentially
growing function. Therefore, we will use the expression “exponential size”
to mean “at least exponential size”, if there is no danger of confusion.

Notation 2.2.9. When speaking of polynomial or exponential size objects
we tacitly assume that these are dynamic objects. For example, a “poly-
nomial size formula” is a dynamic formula of polynomial size; in particular,
being a dynamic formula, a “polynomial size formula” is not a single formula,
but a sequence of formulae.

Relations between objects are lifted to their dynamic versions pointwise.
For example, if in Corollary 4.2.19 we will say that some “polynomial size
formula requires exponential height proofs” we claim that a dynamic for-
mula, that is, a sequence (An)n∈N of formulae exists that has two properties.
The first claim is that (sz(An))n∈N ∈ nO(1), for the size sz(An) that will be
introduced in Definition 3.1.12. The second claim is that for every sequence
(dn)n∈N of proofs such that for every n the proof dn proves An there is some
ε > 0 such that for sufficiently large n the height of dn is at least (1 + ε)n.
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Definition 2.2.10 (Object parametrised by an oracle). By an C-object,
parametrised by an oracle over Σ, we mean a function a : P(Σ∗) → C. We
just call it an object, parametrised by an oracle if Σ is understood. If a is an
object parametrised by an oracle, and A ⊆ Σ∗, by “a, for parameter A” we
refer to a(A).

2.3 Relativised Circuits

The most direct way to express a boolean function is by a propositional
formula. Boolean circuits can be thought of as propositional formulae with
sharing; identical subparts have to be computed only once, as intermediate
results can be used several times and at several places.

Circuits seem a good model of parallel computation. Other models of
parallel computation can be expressed well by means of restricted families
of circuits [12]. The connection to parallel time is that independent parts of
a circuit can be evaluated simultaneously, whereas gates depending on each
other have to be evaluated one after another.

In fact, in this work we will use circuits as our gold standard for the
notion of parallel time. A problem is considered to be highly sequential, if
all small (i.e., sub-exponential) circuits solving it are of big height.

Relativised circuits have also been considered by Wilson [64, 65] as a
model for relativised parallel computation.

Definition 2.3.1 (Circuit). A circuit over a set V of variables is a finite,
vertex-labelled, directed acyclic graph together with

• a repetition-free list of elements of V , called the “input list”, and

• a list of nodes, possibly with repetitions, called the “output list”,

where every vertex of the graph is of one of the following types, i.e., labelled
as described.

• An “input node”, labelled with an element of x ∈ V or with ¬x, where
x ∈ V . We require input nodes to have no incoming edges and x to
occur in the list of inputs.

• An “and-gate”, labelled with the symbol
∧

, assumed not to occur in
V .

• An “or-gate”, labelled with the symbol
∨

, assumed not to occur in V .

• A “not-gate”, labelled with the symbol ¬, assumed not to occur in V .
Not-gates are required to have precisely one incoming edge.

13
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• An “oracle gate”, labelled with the symbol α, assumed not to occur in
V , and a list, possibly with repetitions, of vertices where an edge to
this oracle gate exists. The length of this list is called the width of the
oracle gate.

• A “negated oracle gate”, labelled with the symbol ᾱ and a list, possibly
with repetitions, of vertices where an edge to this oracle gate exists.
Again, the length of this list is called the width of the oracle gate.

The vertices of a circuit are also called its nodes or gates . The size is the
number of its nodes.

The level of a node is the maximum of the lengths of all paths (starting at
an arbitrary node and) ending in this node or 0 if the node has no incoming
edges. The height is the smallest natural number that is strictly greater than
the levels of all nodes.

Remark 2.3.2. Given that a circuit is acyclic (and finite), every path has
finite length. In particular, the notions of level and height are well defined.

Example 2.3.3. The empty circuit has height 0. And the circuit consisting
of a single input node (and no output nodes) has height 1 and its only node
is at level 0.

Definition 2.3.4 (Variable Assignment). A variable assignment for a set V
of variables is a mapping η : V → {0, 1}.

Definition 2.3.5. An oracle is a set A ⊂ {0, 1}∗ of strings over {0, 1}.

Definition 2.3.6 (Circuit Evaluation). A circuit evaluation of a circuit C
over variables V , relative to a variable assignment η for V , and an oracle A
is a mapping v : N → {0, 1} of the nodes N of the circuit to {0, 1} with the
following properties.

• If n ∈ N is an input node labelled x, then v(n) = η(x). If n ∈ N is an
input node labelled ¬x, then v(n) = 1 if and only if η(x) = 0.

• If n ∈ N is an and-gate, then v(n) = 1 if and only if for all nodes n′

such that there is an edge from n′ to n it holds that v(n′) = n.

• If n ∈ N is an or-gate, then v(n) = 1 if and only if there is a node n′

with an edge from n′ to n such that v(n′) = 1.

• If n ∈ N is a not-gate then v(n) = 1 if and only if v(n′) = 0 for the
(uniquely determined) node n′ with an edge to n.

14
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• If n ∈ N is an oracle gate labelled αn1 . . . nk then v(n) = 1 if and only
if v(n1) . . . v(nk) ∈ A, that is, if the string built from the values of the
associated list of inputs belongs to the oracle.

• If n ∈ N is a negated oracle gate labelled αn1 . . . nk then v(n) = 0
if and only if v(n1) . . . v(nk) ∈ A, that is, if the string build from the
values of the associated list of inputs belongs to the oracle.

Proposition 2.3.7. For every circuit C over variables V , variable assign-
ment η for V , and oracle A there is precisely one circuit evaluation of C
relative to η and A.

Proof. By induction on the natural number h we prove that there is one and
only one mapping v from all nodes of C of level strictly smaller than h to
{0, 1} satisfying all the conditions of a circuit evaluation that only refer to
nodes of level strictly smaller than h. Note that by taking h the height of
the circuit we obtain the claim.

For h = 0 there is nothing to show, as there are no nodes of level strictly
below 0. For the inductive step, the conditions of a circuit evaluation leave
one and only one choice on how to extend v.

Remark 2.3.8. The unique existence shown in Proposition 2.3.7 allows us
to speak of the evaluation of C under η and A.

Proposition 2.3.9. Let C be a circuit with input list ~v and A an oracle. If
two variable assignments η and η′ agree on ~v then the evaluation of C under
η and A agrees with the valuation of C under η′ and A.

Proof. By induction on h, we show that the two valuations agree for all nodes
of level strictly below h. Taking h to be the height of the circuit gives the
claim.

Definition 2.3.10 (Function Computed by a Circuit). If C is a circuit with
input list v1, . . . , vk and output list n1, . . . , nℓ then it computes, for every
oracle A, a function fA

C : {0, 1}k → {0, 1}ℓ, called “the function computed
by C relative to A”, in the following way. If v is the evaluation of C rela-
tive to some, and hence any (Proposition 2.3.9), variable assignment η with
η(v1) . . . η(vk) = w ∈ {0, 1}k then fA

C (w) = v(n1) . . . v(nℓ).

Proposition 2.3.11. For every circuit C, there is another circuit of at most
the same height and at most twice the size that does not contain any not-gate
and computes the same function.
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Proof. By induction on h we show that a circuit C ′ without not-nodes exists
that has at most height h and contains, for every node n of C of level strictly
below h, two nodes cn and c′n such that for every variable assignment and
oracle for the corresponding circuit evaluations v for C and v′ for C ′ it holds
that v(n) = v′(cn) and v(n) = 1 − v′(c′n). Note that we do not require the
mapping n 7→ cn to be one-one. Also note that taking for h the height of C
yields the claim.

For an input node n with label x take cn to be an input node labelled x
and c′n an input node labelled ¬x. For an input node n labelled ¬x take cn
to be labelled ¬x and c′n labelled x.

For an and-node n with inputs n1, . . . , nℓ take cn an and-node with inputs
cn1, . . . , cnℓ

and c′n an or-node with inputs c′n1
, . . . , c′nℓ

. Similar for or-nodes
or oracle nodes.

For a not-node n with input m take cn = c′m and c′n = cm.

2.4 Circuit Complexity Classes

Following Aehlig, Cook, and Nguyen [4] we now define relativised versions of
the ACk and NCk complexity classes. The main issue here is how to account
for an oracle gate. This is quite obvious for the ACk-hierarchy, where other
gates with unbounded fan-in also count as height and size 1. However, in
NCk gates should have fan-in 2, which, of course, is not possible for oracle
gates.

Traditionally [64, 65], an oracle gate with ℓ inputs in an NCk circuit is
considered to be of size ℓ and height log(ℓ). Note that a circuit with binary
gates that depends on ℓ inputs has to have at least ℓ − 1 nodes and height
log(ℓ). However, accounting for oracle gates in that way would allow for
a combination, in the same circuit, of a deep nesting of small queries and
shallowly nested long queries. This seems unnatural and does not fit well
with the usual relation to Turing-machine complexity.

We therefore charge, in NCk, the cost for an oracle gate in the n’th member
of the family as height log(n), regardless of the number of actual number of
inputs. Note that for a polynomial size circuit, the number of inputs is bound
by a polynomial and log(nO(1)) = O(log(n)). In other words, our definition
allows slightly less nesting than others previously used in the literature.

In Corollary 2.5.5 we will see that these restrictions, together with an
appropriate definition of relativised log-space computation, will ensure the
known inclusions to be preserved. A careful discussion of the appropriate
definition of relativised Turing machine computation, and proofs of the em-
bedding theorems, can be found in Subsection 2.5.
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Definition 2.4.1 (Family of Circuits). A family of circuits is a family
(Cn)n∈N of circuits in the sense of Definition 2.3.1 such that

• Cn has an input list v1, . . . , vn of length n,

• the number of nodes of Cn grows at most polynomially with n, and

• the maximal width of the oracle gates in Cn grows at most polynomially
with n.

A family of circuits is said to be “for a language” if all the Cn have an
output list of length precisely one.

Remark 2.4.2. The last condition in Definition 2.4.1 might require some
explanation. The general idea of a family of circuits is that every circuit has
the correct signature and, moreover, that the n’the circuit is an object of
size feasible (i.e., polynomial) in n. For this to work we also have to take
“hidden” size into account. In other words, we not only have to ensure that
the number of gates grows only polynomially, but also that the information
needed to describe a particular gate is polynomially bounded as well. Besides
the type of a gate (“and”, “or”, . . . ) we also have to remember its incoming
edges. For “and” and “or” gates, this information is polynomially bounded in
the number of gates of the circuit, as repetitions in the input are not allowed
(and wouldn’t change the output of the gate anyway). For oracle gates, on
the other hand, a complete description of the string to be queried is given.
As this string may contain repetitions, a bound on the number of gates of the
circuit will not imply a bound on the information needed to describe such a
gate. Hence we add the an additional requirement to make the description
of the oracle gates feasible.

Definition 2.4.3 (Function or Language Computed by a Family of Circuits).
A family (Cn)n∈N computes a function {0, 1}∗ → {0, 1}∗, parametrised by
an oracle, in the obvious way. That is to say, for a given oracle A, let
fA

Cn
: {0, 1}k → {0, 1}∗ be the function computed by Cn, in the sense of

Definition 2.3.10. Then (Cn)n∈N computes the function
⋃

n∈N
fA

Cn
.

If (Cn)n∈N is a family of circuits for a language, we say that (Cn)n∈N

computes the language {w ∈ {0, 1}∗|f(w) = 1} where f : {0, 1}∗ → {0, 1} is
the function computed by (Cn)n.

Remark 2.4.4. It should be noted that in Definition 2.4.3 the union
⋃

n∈N
fA

Cn

is indeed a function again, as the individual circuits of the family have dif-
ferent input lengths.
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2 RELATIVISED COMPLEXITY CLASSES

Definition 2.4.5 (ACk(α)). For k ≥ 0, by an ACk(α)-circuit we mean a
family (Cn)n of circuits such that, besides having the properties mentioned
in Definition 2.4.1, the height is bounded by O((log(n))k).

By ACk(α) we denote the set of all functions, parametrised by an oracle,
that can be computed by some ACk(α)-circuit.

Definition 2.4.6 (Oracle Nesting). For every circuit C we say that its oracle
nesting is the maximal number of oracle gates on any path through C.

Remark 2.4.7. Here we follow the convention that the maximum of the
empty set is 0. So a circuit without oracle gates has oracle nesting 0.

Definition 2.4.8 (NCk(α)). For k ≥ 1, by an NCk(α)-circuit we mean a
family (Cn)n of circuits such that (besides having the properties mentioned
in Definition 2.4.1)

• every and-gate and or-gate has at most two incoming edges,

• the height is bounded by O((log(n))k), and

• the oracle nesting is bounded by O((log(n))k−1).

By NCk(α) we denote the set of all functions, parametrised by an oracle, that
can be computed by some NCk(α)-circuit.

Note that in Definition 2.4.8 the height restriction is equivalent to the in-
formal description given at the beginning of this subsection (on page 16).
Restricting the height to O((log(n))k) and the oracle nesting depth to
O((log(n))k−1) is the same as to say that the height has to be O((log(n))k)
where oracle gates are counted as height log(n) regardless of their actual
width.

Definition 2.4.9 (ACk, NCk). An ACk(α)-circuit or NCk(α)-circuit is called
an ACk-circuit or NCk-circuit, respectively, if it does not contain any oracle
gates.

Proposition 2.4.10. NCk(α) ⊆ ACk(α)

Proof. Trivial. Just note that every NCk(α)-circuit also is an ACk(α)-circuit.

Proposition 2.4.11. ACk(α) ⊆ NCk+1(α)
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Proof. Let (Cn)n∈N be an ACk(α)-circuit. We have to find an NCk+1(α)-
circuit computing the same function. First we note that by the height bound,
the oracle nesting of (Cn)n∈N is bounded by O(logk) and that the size bound
implies that number of incoming edges to the gates in (Cn)n∈N is bounded
by nO(1).

Now, let C ′
n be obtained by replacing every and-gate or or-gate with ℓ

inputs in Cn by a balanced tree of binary and-gates or or-gates, respectively.
Then (C ′

n)n∈N obviously computes the same function. As a balanced binary
tree with ℓ−1 nodes has height log(ℓ), the height of C ′

n is that of Cn multiplied
by a factor log(nO(1)) = O(log(n)). Therefore (C ′

n)n∈N is an NCk+1(α)-circuit,
as desired.

So far, we have only considered, what is referred to as the “non-uniform”
versions of the circuit classes. It is easy to see that they contain non-
computable languages. In fact, the full set P(N) of real numbers can be
encoded into the non-uniform AC0-languages.

Proposition 2.4.12. Let A ⊆ N. Then there is an AC0-circuit computing

{w ∈ {0, 1}∗ | |w| ∈ A} .

Proof. We note that for any fixed length n either all strings of length n belong
to the language, or they don’t. So we can chose Cn to be either the canonical
circuit returning 1 on all inputs, or the canonical circuit returning 0 on all
inputs, depending on whether n ∈ A. Then (Cn)n∈N is an AC0-circuit for the
desired language.

Therefore, one often requires that the members Cn of a circuit family
are constructed in a “uniform way”, e.g., by only considering those families
(Cn)n∈N, where there is some form of program that, given n, computes how
Cn looks like.

The most abstract concept of uniformity only exploits the fact, that there
are only countably many programs. This is still enough for the typical diag-
onalisation arguments, as the one in the proof of Theorem 4.1.14.

Definition 2.4.13 (Notion of Uniformity). A notion of uniformity is any
countable set U of circuit families.

Definition 2.4.14 (Uniform Circuit Classes). If U is a notion of uniformity,
then U-uniform ACk, NCk, ACk(α), or NCk(α)-circuits are those ACk, NCk,
ACk(α), or NCk(α)-circuits, respectively, that are in U .

Following the tradition of finite model theory, we use first-order defin-
ablity as our standard notion of uniformity.
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Definition 2.4.15 (First-Order Uniformity). A family of circuits is said to
be first-order uniform, if there are first-order formulae ϕv, ϕ∧, ϕ∨, ϕ¬, ϕα,
ϕᾱ, and ϕ

con
, in the language {0, 1,+, ·, <} with the following properties.

The free variables of ϕ∧, ϕ∨, ϕ¬, ϕα , and ϕᾱ are among {x1, . . . xc} if
nc is the polynomial bound on the circuit size; the free variables of ϕv are
among {y, x1, . . . , xc} and those of ϕ

con
are among {y, x1, . . . , xc, x

′
1, . . . , x

′
c}.

When evaluated over the finite structure with universe [n], the constants
0 and 1 interpreted by 0 and 1, and + and · interpreted by appropriately re-
stricted addition and multiplication, ϕv(i, a1, . . . , ac) holds true if and only if,
in the n’th circuit of the family, the node numbered by the tuple (a1, . . . , ac)
is an input-node for the i’th element of the input list. Similarly, ϕ∧, ϕ∨, ϕ¬,
ϕα, ϕᾱ hold true on (a1, . . . , ac), if and only if the node is an “and gate”,
“or gate”, “not gate”, “oracle gate”, or “negated oracle gate”, respectively.
Moreover, ϕ

con
(i, a1, . . . , ac, b1, . . . , bc) holds true, if and only if the gate num-

bered by the tuple (a1, . . . , ac) is the i’th input to the gate numbered by the
tuple (b1, . . . , bc).

Remark 2.4.16. Since there are only countably many (tuples) of first-order
formulae, first-order uniformity is a notion of uniformity in the sense of Def-
inition 2.4.13.

Definition 2.4.17 (Standard Notion of Uniformity). If, for any circuit class,
we speak of its “uniform version” without further specifying a notion of
uniformity, we implicitly refer to first-order uniformity.

2.5 Relativised Turing Machines and Their Complex-

ity Classes

Assuming some familiarity with the computational model of a Turing ma-
chine [30, 44] we will now discuss how to define computation of a Turing ma-
chine relative to an oracle and define the corresponding relativised complexity
classes Lα and NLα for deterministic and non-deterministic logarithmic space,
relative to the oracle α.

The need to discuss their definitions arose from the observation that there
doesn’t seem to be an agreed definition in the literature such that the rela-
tivised small complexity classes are closed under composition, let alone AC0

reductions, and, moreover, the known inclusions

NC1 ⊆ L ⊆ NL ⊆ AC1

(for the uniform versions of NC1 and AC1) are preserved. In fact, Ladner and
Lynch [41] show that, for a naive definition of NLα, a computable oracle α
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can be found such that NLα is not even contained in Pα. The problem with
their definition is that the non-deterministic machine is allowed to “guess”
oracle queries, rather than computing them. In this introduction, we will
give a different example for problems with the naive definition.

We follow the general concept to relativise a Turing machine by means of
“oracle tapes”. Here, an oracle tape is an additional, write-only tape where
the Turing machine can write a question to the oracle; additionally there
is an “oracle state” to signal that the query is complete. Once the oracle
state is entered, the oracle tape is cleared and the machine changes to a
designated “yes” state or a designated “no” state, depending on whether or
not the string queried belongs to the language of the oracle.

The first question is how to account for the space used on the oracle tape.
For sublinear space classes, like Lα, it seems unreasonable to fully charge the
machine for the space used. Indeed, if doing so, Lα wouldn’t be, in general,
able to compute α as this would require copying the input to the oracle tape.
This motivates charging only moderately the space used on the oracle tape,
say logarithmically (the space needed to keep track of the head position on
the oracle tape) or not at all.

With this moderate charge, a new problem occurs when allowing non-
determinism; the oracle might be used as additional, illegitimate storage as
the following example shows. Let α be the language consisting of all pairs of
a Boolean formula and a satisfying assignment. Clearly, α ∈ L. But now, for
a naive notion of non-determinism, a non-deterministic log-space machine
with an oracle for α can solve the satisfiability problem as follows.

Copy the input to the oracle tape. Then, non-deterministically,
write some assignment for the variables on the oracle tape. Query
α and accept if and only if the query belongs to α.

However, for any sensible notion of relativisation, an oracle for L shouldn’t
be of any help to an NL-machine—but an NL-algorithm for the satisfiability
problem is not known today. In fact, most computer scientists believe that
such an algorithm doesn’t exist at all; note that the existence of an NL-
algorithm for the satisfiability problem would imply P = NP. Moreover, there
is no obvious way how the L-algorithm for α can be inserted into the above
cited NLα-algorithm as to obtain an NL-algorithm for the same problem.

This obstacle was first noted by Ruzzo, Simon and Tompa [53]. They
suggested the restriction that a Turing machine be deterministic unless the
oracle tape is empty. The rationale for this restriction is the idea to fully
charge the machine for oracle queries, but allow it to use some efficient coding
of the query—the deterministic process of writing to the oracle tape is just
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the “decoding” of the query implicitly described by the state of the machine
in the moment the first symbol is to be written.

The second obstacle we have to face when relativising complexity classes
with sub-linear space restriction is the requirement that sensible complex-
ity classes be closed under composition. To see where this obstacle arises,
recall the standard proof [34] that L is closed under composition; note that
the output of an L-Turing machine, in general, is of polynomial length and
therefore cannot be stored entirely by an L-Turing machine. Nevertheless,
for M1 and M2 Turing machines in L, the composition of their functions can
be computed by the following log-space algorithm.

Start simulating the second Turing machine M2. If a particular
symbol of the output of M1 is needed, interrupt the current sim-
ulation and re-simulate (on a separate section of the work tape)
the entire computation of M1 until the point where the needed
symbol is written; other output symbols ofM1 need not be stored.

Even though this algorithm works well for L, a difficulty arises in the case of
the relativised version Lα. Consider the cases that M2 needs the output of
M1 while composing an oracle query. However, if M1 is in Lα as well it will
presumably need to pose oracle questions itself. This shows that, in general,
a single oracle tape is not enough.

To overcome this problem, Wilson [64] suggested a stack model for rela-
tivised Turing machines. While composing an oracle query, the machine may
decide to “push” a fresh tape on the stack of oracle tapes to compose a new
query on it; once the new query is answered, the additional tape is “popped”
and the answer of this query may be used to continue composing the first
query. We observe that a stack of constant height suffices to obtain closure
under composition.

Definition 2.5.1 (Lα, NLα,L, NL). L is the class of all languages computable
by a log-space Turing Machine and NL is the class of all languages computable
by a non-deterministic log-space Turing Machine

For a unary relation α on strings, Lα is the class of languages computable
by log-space, polytime Turing machines using an α-oracle stack whose height
is bounded by a constant. NLα is defined as Lα but the Turing machines are
allowed to be non-deterministic when the oracle stack is empty.

It should be noted that every deterministic log-space Turing machine
necessarily runs in polynomial time. However, this will become a non-trivial
restriction as soon as we consider non-determinism.

The Turing machine classes we defined are already a uniform concept.
So, when speaking of its uniform version, we just mean the class itself.

22



2.5 Relativised Turing Machines and Their Complexity Classes

The introduction of a stack of oracle tapes solves both mentioned prob-
lems. This is the content of the following proposition and Corollary 2.5.18
which will show that NLLα

= NLα.

Proposition 2.5.2. Lα is closed under composition.

Proof. As in the classical proof sketched above (on page 22) the Lα-machine
for the composition essentially simulates the second Lα-machine. Whenever
output from the first Lα-machine is needed, the computation is interrupted
and the first machine is simulated till the needed output is produced. Due to
the availability of an oracle stack such a simulation can happen even during
the composition of an oracle query—the oracle tapes needed in the simulation
of the first machine are just pushed on top of the stack. The height of the
oracle stack of the composed machine is bounded by the sum of bounds for
the individual machines, and hence bounded by a constant as well.

Following Aehlig, Cook, and Nguyen [4], we will now show that the inclu-
sion properties that motivated our definition of the relativized circuit com-
plexity classes (Subsection 2.4) as well as that of Lα and NLα actually hold.

Theorem 2.5.3. Every language in NLα can be computed by a uniform family
of AC1(α) circuits where the nesting depth of the oracle gates is bound by a
constant.

In particular, for the uniform versions, NLα ⊆ AC1(α).

Proof. We follow the standard proof [48] that NL ⊆ AC1, that is, we consider
reachability in the graph of configurations of the non-deterministic Turing
machine. A small technical problem arises. The contents of the oracle tapes
are too big to be considered in the graph—otherwise the graph would no
longer be polynomially bounded. Fortunately, the relation “when starting
to write on the oracle tape in this particular configuration we can reach
a configuration where a 1 is written to the i’th cell of the oracle tape” is a
reachability relation. Recall that the machine behaves deterministically if the
tape is non-empty. Therefore, the only chance that a situation is reachable
where a particular letter is written into a particular cell is that it actually
happens. Hence every bit of the oracle query is a reachability relation and
therefore AC1.

More formally, let M be the NL-Turing machine and h the height bound
on the oracle stack. A configuration consists of the local state of the machine,
the contents of the work tape, the height and the positions of the various
Turing machine heads. Note that it does not include the contents of the
oracle tapes. As the length of the work tape is logarithmically bounded,
there are only polynomially many configurations.
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2 RELATIVISED COMPLEXITY CLASSES

For i = h, h−1, . . . , 1, 0 we now consider the reachability relation re-
stricted to those moves where the height of the oracle stack never falls below
i. For i = h this is just the normal transition relation of a Turing machine, as
no further push operation is possible and any pop operation would result in
the height of the oracle stack falling below h. Hence the neighbour relation
is a trivial local condition, hence AC0, and therefore the overall reachability
problem is AC1. (The existence of a path of length at most 2k+1 can be
described as “there is a node v and paths of length at most 2k from s to v
and from v to t” which is AC0 in the predicate for paths of length 2k.)

Now assume that the relation for oracle stack heights of i or bigger is
already established as an AC1(α)-circuit. We consider the corresponding
“big-step relation”, that is, for configurations with height i−1 of the oracle
stack where the next transition is a push operation we go directly to the
configuration after the corresponding pop. First we note that finding the
configuration which performs the corresponding pop is just the reachability
relation for configurations with oracle stack never below i. However, the
outcome of this pop depends on the answer of the oracle, which, in turn,
depends on the question asked. But, as discussed above, every bit of the ora-
cle question is just an instance of the reachability relation for configurations
with stack never below i—“can be reach a state where the head on the top
oracle tape in position j and the letter 1 is written?”. So, a constant height
circuit (on top of the already established relation for i) with a single oracle
gate suffices for each such big step. Once these big steps are established,
reachability is the usual AC1-problem, just as in the case of i = h.

Hence we get an AC1(α)-circuit for every i. The case i = 0 yields the
claim.

Lemma 2.5.4. For the uniform versions, NC1(α) ⊆ Lα.

Proof. First note, that our the uniformity condition implies that an Lα Turing
machine can compute any part of the relevant circuit at will; so we can assume
the circuit for the particular input size to be given.

The Lα machine now carries out a depth-first traversal of the circuit. Dur-
ing this traversal, the value of each node visited is calculated, till, at the end
of the traversal the value of the output node is computed. It should be noted
that during this traversal the only information that has to be remembered
is about the current node and the nodes on the path taken from the root
to the current node. As NC1(α) circuits are of logarithmic height, there are
only logarithmically many nodes involved at any one moment. Moreover, for
every non-oracle node only a fixed amount of information has to be stored:
the direction (left or right) chosen and the value of the sub-node not taken,
if already calculated.
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2.5 Relativised Turing Machines and Their Complexity Classes

By the restriction on NC1(α) circuits, there is only a constant number
of oracle gates on every path. For every oracle gate, we store the direction
taken (which, in general, requires logarithmically many bits); the partially
constructed query is stored on an oracle tape. Note that the stack-like access
to the oracle tapes fits with depth-first traversal and that, moreover, only a
constant-height stack is needed.

Corollary 2.5.5. For the uniform versions, NC1(α) ⊆ Lα ⊆ NLα ⊆ AC1(α).

Proof. The only non-trivial inclusions are those shown in Theorem 2.5.3 and
Lemma 2.5.4.

Remark 2.5.6 (Relativised Space O(logk)). Following the general princi-
ple, motivated in this section, of charging oracle queries according to their
potential, rather than their actual length, it seems obvious how one should
define relativised space O(logk) for k ≥ 1.

Since Oracle tapes should be charged log n, we allow an oracle stack
of height O((log n)k−1). Of course, we keep the restriction that a non-
deterministic machine be deterministic, whenever the oracle stack is not
empty. Note that this definition includes our definition of Lα and NLα as
the special case k = 1.

Reinspecting the proof of Lemma 2.5.4, one realises that the relativised
space classes O(logk) include NCk(α). A straight forward generalisation of
the proof of Theorem 2.5.3 to these polylogarithmic space classes fails—
however not for anything related to the oracles (that would work out cor-
rectly!), but simply for the reason that the set of states of such a Turing
machine is no longer polynomially bounded.

Definition 2.5.7 (Lα-function, Lα-reductions). A function f from strings to
strings is an Lα function, if the lengths of the output is polynomially bounded
in the length of the input, and the following problem is in Lα. “Given a string
x, a letter c and a natural number i, decide whether f(x) has at least i+ 1
symbols and the i’th symbol of f(x) equals c”.

A language L is Lα-reducible to L′, if there is an Lα-function f such that
x ∈ L if and only if f(x) ∈ L′. A language L is Lα-complete for a set
of languages, if it belongs to the set and every other element of the set is
Lα-reducible to it.

Remark 2.5.8. The set of Lα-functions can also be characterised as the
set of functions computable by an Lα-machine equipped with an additional
write-only output tape.
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2 RELATIVISED COMPLEXITY CLASSES

Proof. To see that an Lα-machine equipped with an output tape can compute
any Lα-function, consider the following algorithm. Initialise a counter i to
zero. Then repeatedly iterate though all possible symbols c of the output
alphabet and decide—using that this problem is in Lα—whether the i’th
symbol is c. If so, output c, increment the counter and repeat. If it is found
that none of the possible symbols occurs at position i, then the output is
ended; just halt in this case.

For the other direction, first note that Lα-machines, having a polynomial
time bound, can only write polynomially many symbols. Hence the bound
on the output length holds.

Now, an Lα-machine with output tape can be modified in the following
way as to solve the decision problem. On input x, i, c, first initialise a counter
to 0 and then behave as the original machine, except when an output symbol
is to be written. In this case check whether the counter has the value i.
If not continue with the counter increased. Otherwise check whether the
symbol that is about to be written equals c. Answer the decision problem
accordingly. If the original machine halts, then the output string has less
than i+ 1 symbols, so the answer is “no”.

Recall that “s-t-connectivity” is the following problem.

Given a directed graph and two nodes s and t in it. Decide
whether there is a path from s to t.

It is well known [55, 33, 48] that s-t-connectivity is NL-complete under L-
reductions, in fact even under AC0-reductions. Adding the oracle access to
our notion of reductions, it remains complete also for NLα.

Lemma 2.5.9. The problem s-t-connectivity is complete for NLα under Lα-
reductions.

Proof. Since s-t-connectivity is in NL, it is trivially in NLα. As for the other
direction, let an NLα-machine and its input be given. By an Lα-function we
can compute, for that particular input, the transition graph of all configura-
tions with empty oracle tapes. Note that there are only polynomially many
of these.

Between these configurations the transitions that do not involve oracle
tapes can be computed as usual. If a possible transition involves writing to
an oracle tape, then the NLα-machine has to behave deterministically from
this moment onwards. Hence the Lα-machine can compute the “big step” till
the next time the oracle stack is empty.
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2.5 Relativised Turing Machines and Their Complexity Classes

Now the question, whether x is in the language of the NLα-machine is
equivalent on whether from the initial configuration the accepting configu-
ration can be reached (we may assume, without loss of generality, that the
NLα-machine clears up its work tape before entering the accepting state).
This finishes the proof.

An important consequence of Lemma 2.5.9 is that NLα is closed under
complement. We actually can appeal directly to Immerman-Szelepcsényi’s
theorem [32, 61] that NL is closed under complement.

Corollary 2.5.10. NLα is closed under complement.

Proof. Given an NLα language, we can use the reduction in Lemma 2.5.9
to find, for every x, a graph and two nodes such that there exists a path if
and only if x belongs to the language. So a string does not belong to the
language, if in the corresponding graph there is no path from s to t. But by
Immerman-Szelepcsényi’s theorem the complement of s-t-connectivity is in
NL as well. This finishes the proof.

In a similar manner, we obtain a relativised version of Savitch’s theo-
rem [54].

Corollary 2.5.11. Every language in NLα can also be decided by a deter-
ministic oracle Turing machine in space O(log2).

Proof. By Lemma 2.5.9, every problem in NLα can, in Lα be reduced to s-t-
connectivity. But s-t-connectivity is in NL and hence by Savitch’s theorem
also in deterministic space O(log2). Therefore the composition of these two
procedures is as desired.

Remark 2.5.12. The proof of Corollary 2.5.10 does not directly generalise
to showing that the non-deterministic space classes O(logk), as mentioned in
Remark 2.5.6, are closed under complement.

Nevertheless, the idea, also implicit in the proof of Theorem 2.5.3, does
generalise. Non-deterministic relativised space O(logk) can be described as
reachability in a graph with nodes described by strings of length O(logk)
and an edge relation available to a deterministic relativised space O(logk)
machine. Now, doing the same “guess and verify the count” algorithm as in
the original proof of the Immerman-Szelepcsényi theorem [32, 61] shows that
a non-deterministic machine with constantly many pointers (also usable as
counters) into this graph can solve non-reachability. This shows the desired
closure under complement.
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2 RELATIVISED COMPLEXITY CLASSES

Definition 2.5.13 (AC0(α)-reduction). A set L is AC0(α)-reducible to L′, if
there is a uniform AC0(α) circuit whose language relative to α⊕ L′ is L.

In other words, L is reducible to L′, if L can be computed by a family of
polynomial-size constant-height circuits that have, besides the logical gates,
gates for α and for L′.

As usual, we call a language AC0(α)-complete for a complexity class, if
every language in the complexity class is AC0(α)-reducible to that language.
Careful analysis of the proof of Theorem 2.5.3 reveals that actually a stronger
result is shown there.

Proposition 2.5.14. The (unrelativised) problem s-t-connectivity is AC0(α)-
hard for NLα.

Proof. As in the proof of Theorem 2.5.3, we follow the standard proof that
NL ⊆ AC1. That is, we consider the reachability graph of the non-deterministic
Turing machine, again not considering the state of the oracle tapes as part
of the configuration, but reconstructing it, as needed, by describing it as a
reachability relation.

However, as opposed to the proof of Theorem 2.5.3, we use the reacha-
bility oracle to solve the reachability problems under consideration, rather
than constructing an AC1-circuit. This will keep the constructed circuit flat,
i.e., of constant height. Again, we iteratively solve this problem of the reach-
ability relation restricted to those moves where the height of the oracle stack
never falls below i, for i = h, h−1, . . . , 1, 0 where h is the height bound on
the oracle stack.

By a completely similar argument as we obtain

Proposition 2.5.15. The (unrelativised) line-reachability problem problem
is AC0(α)-hard for Lα

The converse of Proposition 2.5.15 holds as well.

Lemma 2.5.16. Lα can evaluate AC0-circuits with α-gates and gates for
line-reachability.

Proof. As in the proof of Lemma 2.5.4, the Lα machine carries out a depth-
first traversal of the circuit. For a line-reachability gate the machine simulates
an L-machine solving this problem, computing the inputs as needed (possibly
several times, if the L-machine reads a particular bit several times). Since the
height of the circuit is constant, the work tapes of the simulated L-machines
can be stored in logarithmic space. Moreover, the traversal guarantees that
queries to α are only build in a stack-like fashion.
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The proof of Lemma 2.5.16 as presented cannot be directly extended
to the evaluation in NLα of AC0-circuits with α-gates and gates for s-t-
connectivity. It is not known to the author whether this statement actually
is true. The problem with a naive extension is that the NLα machine would
have to solve an instance of the s-t-connectivity problem as part of the input
for an oracle gate. But in this situation, i.e., while having an oracle query
partially constructed, the machine would have to behave deterministically.

Lemma 2.5.17. LLα

= Lα

Proof. Since α ∈ Lα, the inclusion LLα

is obvious.
For the other inclusion, let A be an Lα-language and consider an L-Turing-

machine with an oracle for A. By Proposition 2.5.15 this machine can be
described my an AC0-circuit with gates for A and line-reachability. Again by
Proposition 2.5.15 the language A can be described by an AC0-circuit with
gates for α and line-reachability. Substitution this circuit for the A-gates in
the first circuit yields an AC0-circuit with gates for α and line-reachability.
By Lemma 2.5.16 this circuit can be evaluated in Lα.

Corollary 2.5.18. NLLα

= NLα

Proof. Consider an NL-machine with an oracle in Lα. As long as the oracle
stack is empty the machine behaves as an NL machine without oracle. From
the moment on, the first symbol is written to an oracle tape, the machine
has to behave deterministically. So the computation until the stack is empty
for the next time is in LLα

, which, by Lemma 2.5.17 is Lα. Hence the whole
computation can be carried out in NLα.
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3 Relativised Quantified Propositional Logic

In this section we present a calculus for quantified propositional logic, fol-
lowing Aehlig and Beckmann [2]. It will mainly be in the style of Tait [62],
however quantification will be done symbolically, and not by unfolding the
(exponentially, but finitely, many) possibilities. The main interest in this
calculus will lie in the fact that the height of proofs in this calculus is a
meaningful measure and in fact closely related to the height of circuits.

In fact, Theorem 4.3.9 will show (together with Lemma 4.3.3) that, up
to an additive constant, for some canonical circuit, the height of the most
shallow circuit of sub-exponential size is the height of that very circuit. This
canonical circuit will solve an inherently sequential problem as the discussion
in Subsection 4.1 will show (where the problem is also formally introduced);
the problem considered is to iterate a function that is given by the oracle.

Kraj́ıček and Pudlák [39] studied quantified propositional logic in relation
to complexity classes and Bounded Arithmetic. They introduced various
dag-like (G1, G2,. . . , G) and tree-like systems (G∗

1, G
∗
2,. . . , G

∗). Cook and
Morioka (in a slightly modified setting) identified [17] the calculi G0 and G∗

0

which relate to NC1.
One motivation for the study of restricted propositional proof systems is

the relation to weak theories of bounded arithmetic. Some of these theories
are introduced in Section 5.

For various complexity classes, corresponding proof systems [51, 57] have
been identified. However, a unifying framework for the propositional systems
still seems to be missing. We suggest a calculus which is flexible enough to
allow for embedding of various theories (as we shall see in Section 6), but is
still strict enough that the height of proofs is a meaningful measure.

3.1 The Language of Relativised Quantified Proposi-

tional Logic

As absolute separation results for complexity classes within polynomial time
currently seem out of reach, we have to relativise our language, in order
to obtain unconditional separation results. Relativisation in propositional
logic consists of adding an uninterpreted predicate (a “parameter”) on bit
vectors. That is, we allow new propositions of the form αk℘1 . . . ℘k, see
Definition 3.1.3.

Definition 3.1.1 (Propositional Atoms). The atoms of propositional logic
are variables p, q, r, . . ., their negations p̄, q̄, r̄, . . ., as well as the constants T
and F or truth and falsity.
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3 RELATIVISED QUANTIFIED PROPOSITIONAL LOGIC

The set of all propositional atoms is denoted by A.

Notation 3.1.2. ℘ ranges over elements of A, that is, over the atoms of
propositional logic.

The idea of relativisation, that is, the idea of having the possibility of
querying an “oracle” (in the sense of relativised computational complexity
classes) is modelled by adding a new constructor α to build formulae. This
constructor is given a bit string of a fixed length, given at the meta level. In
other words, for every k we assume a symbol αk and a negated symbol ᾱk.

We follow the guiding principle of a “call by value” semantics of the oracle.
That is, an oracle only receives already computed values and not computa-
tions. In (quantified) propositional logic, values correspond to propositional
variables and constants, whereas formulae correspond to (special) computa-
tions. This intuition motivates the following definition.

Definition 3.1.3 (Propositional Parameter Queries). The parameter queries
of propositional logic are formulae αk℘1 . . . ℘k and their negation ᾱk℘1 . . . ℘k,
where k is a natural number and ~℘ are propositional atoms.

As it is common for Tait-style calculi, conjunction and disjunction are
“wide” in the sense that several (in general more than two) formulae are
joined together. In this setting, the reasonable notion of quantification is
block quantification, that is, we allow to quantify over a whole block of
variables at the same time. Note that quantification over a single variable
has expressive power of an only binary conjunction or disjunction.

As in the case of the parameter, the lengths of conjuncts, disjuncts and
variable blocks to be quantified over comes from the meta level. That is, in
the following definition

∧

1,
∧

2,
∧

3 and so on are all different symbols of our
language; similar for the other connectives.

Definition 3.1.4 (Quantified Propositional Formulae). The set of quanti-
fied propositional formulae A,B,C, . . . is built up from the atoms and pa-
rameter queries of propositional logic by wide conjunctions

∧

k A1 . . . Ak and
disjunctions

∨

k A1 . . . Ak, and block universal ∀kp1 . . . pkA and existential
∃kp1 . . . pkA quantification.

The variables p1, . . . , pk, as well as their negations p̄1, . . . , p̄k are bound
in ∀kp1 . . . pkA and ∃kp1 . . . pkA. We consider alpha-equivalent formulae as
syntactically identical.

Remark 3.1.5. This syntactical identification does not contradict our intu-
ition of syntactical identity as equality of strings of symbols. For example,
we could imagine the binding as a meta-syntactical operation [9], replacing
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every occurrence of the bound variable by the appropriate de Bruijn index [8].
Then alpha-equal formulae are represented by the identically same string of
symbols.

Definition 3.1.6 (Purely Propositional Formulae). A quantified proposi-
tional formula without any quantifications is called a purely propositional
formula.

Notation 3.1.7. We use the term “propositional formula” to mean “quan-
tified propositional formula”.

Notation 3.1.8. Syntactical equality is denoted by ≡.

Notation 3.1.9. We write ∧ and ∨ for
∧

2 and
∨

2, respectively.

Notation 3.1.10. Even though our official notation is the Polish one, we
use A ∧ B and A ∨ B as abbreviations for ∧AB and ∨AB, respectively, if
there is no danger of confusion. Also, parentheses may be used to facilitate
reading or to disambiguate these abbreviations.

Moreover, we write αk(℘1, . . . , ℘k) for αk℘1 . . . ℘k, and ᾱk(℘1, . . . , ℘k) for
ᾱk℘1 . . . ℘k.

Definition 3.1.11. A quantified propositional formula is α-free, if it does
not contain any propositional parameter αn, for any n. It is called closed, if
it does not contain any free propositional variables.

Note that any closed, α-free quantified propositional formula has a stan-
dard truth value T or F in the obvious way.

Definition 3.1.12 (sz(A)). If A is a formula of quantified propositional logic,
we define its size by induction on A as follows.

• sz(℘) = sz(αk ~℘) = 1

• sz(
∨

k
~A) = sz(

∧

k
~A) = 1 +

∑

1≤i≤k sz(Ai)

• sz(∀k~pA) = sz(∃k~pA) = 1 + sz(A)

Definition 3.1.13 (dp(A)). If A is a formula of quantified propositional
logic, we define its depth by induction on A as follows.

• dp(℘) = dp(αk ~℘) = 1

• dp(
∨

k
~A) = dp(

∧

k
~A) = 1 + max{dp(Ai) | 1 ≤ i ≤ k}

• dp(∀k~pA) = dp(∃k~pA) = 1 + dp(A)

33
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Definition 3.1.14 (Negation). By induction on A a formula ¬A is de-
fined in the obvious way. More precisely, we set ¬T ≡ F, ¬F ≡ T,
¬p ≡ p̄, ¬p̄ ≡ p, ¬(αk℘1 . . . ℘k) ≡ ᾱk℘1 . . . ℘k, ¬(ᾱk℘1 . . . ℘k) ≡ αk℘1 . . . ℘k,
¬(

∧

k A1 . . . Ak) ≡
∨

k(¬A1) . . . (¬Ak), ¬(
∨

k A1 . . . Ak) ≡
∧

k(¬A1) . . . (¬Ak),
¬(∀kp1 . . . pkA) ≡ ∃kp1 . . . pk(¬A), and ¬(∃kp1 . . . pkA) ≡ ∀kp1 . . . pk(¬A).

Proposition 3.1.15. ¬¬A ≡ A.

Proof. Induction on A.

Notation 3.1.16. We use A→ B as abbreviation for (¬A)∨B and A↔ B
as abbreviation for (A→ B) ∧ (B → A).

Notation 3.1.17. If A is a quantified propositional formula, ~p are pairwise
distinct propositional variables, and ~B are quantified propositional formulae,
then by A[ ~B/~p] we denote the simultaneous capture-free substitution of all
pi by Bi and of all p̄i by ¬Bi.

Since we identify alpha-equal terms, “capture-free substitution” is a well-
defined notion in the sense that the result is uniquely defined (up to our
identification). Alternatively, we could assume that we always take a repre-
sentative where all bound variables are different from all the variables men-
tioned in the substitution. Note that if we stick to our convention that bound
variables are replaced by the appropriate de Bruijn index whereas free vari-
ables keep their names, than the naive substitution replacing each occurrence
of pi by Bi and each occurrence of p̄i by ¬Bi is already capture free.

Notation 3.1.18. When displaying variables of a formula as in A(~p) this
should signify that these variables, among others, may occur in A. This
notation does not imply that these variables actually do occur free and the
list ~p does not necessarily exhaust all the free variables of A. The purpose
of such a display of variables is to distinguish certain variables so that later
A( ~B) can be used as a shorthand for the substitution A[ ~B/~p].

Definition 3.1.19 (Propositional Substitution). A propositional substitution
is a mapping from propositional variables to quantified boolean formulae that
differs from the identity only at finitely many places.

The range of a propositional substitution ρ is the set of the image of those
variables moved, i.e., the range of ρ is {ρ(p) | ρ(p) 6= p}.

Remark 3.1.20. With substitutions being functions, Definition 3.1.19 is
in contradiction with the definition of the range, with substitutions seen as
functions (compare Notation 2.1.3). To avoid confusion, we hereby adopt
the convention that we’ll never apply the range definition for function to
substitutions.
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We will often call a propositional substitution simply a “substitution”, if
it is clear from the context, that we speak about propositional logic.

Definition 3.1.21 (Atomic Substitution). A substitution is called atomic,
if it maps propositional variables to propositional atoms.

We use σ to range over atomic substitutions.

Definition 3.1.22 (Σ-closure). Let F be a set of quantified propositional
formulae closed under atomic substitutions. The Σ-closure ΣF of F is de-
fined to be the smallest set that

• contains F ,

• is closed under
∨

k, that is, if ~A ∈ ΣF then
∨

k
~A ∈ ΣF , and

• is closed under ∃k, that is, if A(~p) ∈ ΣF then ∃k~pA(~p) ∈ ΣF .

Note that the notation ΣF implicitly presupposes that F is closed under
atomic substitutions.

Remark 3.1.23. In Definition 3.1.22 we required F to be closed under
renaming of propositional variables, in order to be able to conclude from
∃k~pA(~p) ∈ ΣF \ F that A(~p) ∈ ΣF , despite our convention (see Defini-
tion 3.1.4) that we identify alpha-equal formulae.

Definition 3.1.24 (Σq
i (α), Πq

i (α)). We define sets Σq
i (α) and Πq

i (α) by in-
duction on i as follows. Σq

0(α) = Πq
0(α) is the set of the purely propositional

formulae, Σq
i+1(α) = ΣΠq

i (α) and Πq
i+1(α) = {¬A | A ∈ Σq

i+1(α)}.

3.2 Logical Rules in Quantified Propositional Logic

Notation 3.2.1. We use Γ,∆, . . . to denote finite sets of formulae.

Definition 3.2.2 (Propositional Rules). The propositional rules of quanti-
fied propositional logic are the following rules.

Γ, p, p̄ Γ,T

Γ, αk(℘1, . . . , ℘k), ᾱk(℘1, . . . , ℘k)

Γ, Ai

Γ,
∨

k A1 . . . Ak

. . . Γ, Ai . . . (1 ≤ i ≤ k)

Γ,
∧

k A1 . . . Ak

Here the ~℘ are arbitrary propositional atoms (Definition 3.1.1). In the last
two rules, the formulae

∨

k A1 . . . Ak and
∧

k A1 . . . Ak are called the principal
formulae of that inference.
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3 RELATIVISED QUANTIFIED PROPOSITIONAL LOGIC

Remark 3.2.3. In all the rules (including those to come) we may always
assume without loss of generality that the conclusion is already contained in
the premise. For example, a typical instance of the or-rule would in fact be

Γ, A0 ∨A1, Ai

Γ, A0 ∨ A1

.

Definition 3.2.4 (Parameter Extensionality). The rules of parameter ex-
tensionality are the following rules.

Γ, αk(℘1, . . . , ℘k) . . . Γ, ℘i ↔ ℘′
i . . . (1 ≤ i ≤ k)

Γ, αk(℘
′
1, . . . , ℘

′
k)

Γ, ᾱk(℘1, . . . , ℘k) . . . Γ, ℘i ↔ ℘′
i . . . (1 ≤ i ≤ k)

Γ, ᾱk(℘
′
1, . . . , ℘

′
k)

Here ~℘, ~℘′ may be arbitrary atoms of propositional logic.

Definition 3.2.5 (Eigenvariables). At various places we will require a vari-
able to be an eigenvariable of a rule. By this we mean that this variable is
to be chosen in such a way that it does not occur in the conclusion of the
rule. Note that this formal definition in all instances will turn out to be
equivalent to the informal requirement that the variable occur only where it
is “explicitly mentioned”.

Definition 3.2.6 (Quantification Rules). The rules of quantification in quan-
tified propositional logic are the following rules.

Γ, A(~a)

Γ, ∀k~pA(~p)

Γ, A(~℘)

Γ, ∃k~pA(~p)

Here ~a have to be pairwise distinct eigenvariables. The ~℘ may be arbitrary
propositional atoms. The formulae ∀k~pA(~p) and ∃k~pA(~p) are called the prin-
cipal formulae of that inference.

Remark 3.2.7. It should be noted that in our introduction rules for the
existential quantifier we only allow propositional atoms as witnesses. This
differs from other presentations [39, 45, 18], where more complicated “tar-
get formulae” are allowed. The rationale is that our calculus is to follow
AC0-computations as closely as possible. Therefore, we consider the compu-
tation of the value of a variable as important in enough to keep track of its
dependencies and hence have a separate rule for it. We think of the quan-
tification rules are merely keeping track of the binding places of variables.
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3.2 Logical Rules in Quantified Propositional Logic

The fact that a variable (being a propositional atom!) can stand for a com-
plicated value is reflected in the comprehension rule (Definition 3.2.11), that
also can reflect independence of newly introduced variables, irrespectively of
their later use as witnesses. See also Remark 3.2.12.

The importance of handling variable dependencies independent of binding
places will become obvious when considering (in Subsection 4.3) the problem
of evaluating a circuit. The intuitive reason, and an upper bound, is provided
by the proof of Lemma 4.3.3. The corresponding lower bound is provided by
Theorem 4.3.9.

Definition 3.2.8 (Cut Rule). The cut rule of quantified propositional logic
is the following rule.

Γ, A Γ,¬A
Γ

The formula A in the cut rule is called the “cut formula”.

We aim to design a calculus that appropriately reflects “AC0-reasoning”
and its sequential strength. One of the problems that can be solved in AC0

is the following:

Given truth values p1, . . . , pn and q1, . . . , qn, output qi if i is the
smallest index such that pi is true.

A similar task in standard calculi of propositional logic would require a se-
quence of cuts, thus artificially increasing the height. As our investigations
are essentially based on differences like constant versus logarithmic height,
we cannot afford this increase. We therefore introduce a new rule allowing
multiple cuts at once.

The fact that the multi-cut rule allows propositional induction to be
shown by a constant height proof (Remark 3.2.10) will allow a constant
height proof that evaluation of a certain (canonical) circuit implies the iter-
ation principle, as can be seen from the proof of Corollary 4.3.8. The fact
that this is a constant will be responsible for the very tight bound of proof
heights and circuit heights established in Theorem 4.3.9. Another use of
the multi-cut rule is the handling of the implicit induction principle due to
the length function in the comprehension axiom. This can beautifully be
seen in the proof of Lemma 6.2.7, where the propositional translation of the
comprehension axiom is shown.

Definition 3.2.9 (Multi-Cut Rule). The multi-cut rule is the rule

. . . Γ,∆i . . .
Γ
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3 RELATIVISED QUANTIFIED PROPOSITIONAL LOGIC

where the ∆i are sets of purely propositional formulae such that from the
collection of the ∆i the empty sequent can be derived by cuts only.

The width of the multi-cut rule is
∑

i |∆i|, where |∆i| is the cardinality
of the set ∆i.

In other words, if from an arbitrary number of sequents, a sequent Γ can
be derived by cuts on only purely propositional formulae, then this derivation
of Γ counts as a single application of the multi-cut rule. For the calculus ob-
tained to be a proof system in the sense of Cook and Reckhow [21] we require
that the sequence of cuts be annotated in notations for proofs. However, as
we are only interested in the number of rules applied we will never deal with
notations for proofs.

Remark 3.2.10. The multi-cut rule allows one to prove purely propositional
induction in constant depth.

In fact, from proofs of Γ,¬Ai, Ai+1 for all i < k, we can conclude by a
single inference that Γ,¬A0, Ak.

Next we will define the comprehension rule. It is motivated by the ex-
tension rule of extended Frege calculus [21, 36]. There, a new propositional
variable may be introduced by the axiom p↔ ϕ, if p is new, that is, does not
occur anywhere earlier in the derivation. The extension rule says that if Γ
can be derived from the assumption ∃p(p ↔ ϕ), then it can also be derived
without. Note that ¬(∃p(p ↔ ϕ)) ≡ ∀p¬(p ↔ ϕ). As usual, the universal
quantifier is expressed by the eigenvariable condition.

In order to take into account dependencies or independence of introduced
variables we allow the introduction of several extension variables at the same
time.

Definition 3.2.11 (F -comprehension). The F-comprehension rule of width
k is the rule

Γ,¬(p1 ↔ ϕ1), . . . ,¬(pk ↔ ϕk)

Γ

where ϕ1, . . . , ϕk ∈ F and p1, . . . , pk are pairwise distinct eigenvariables that
do not occur in any of the ϕi’s (and by the eigenvariable condition they do
not occur in Γ either).

The variables pi are also called “extension variables” and the ϕi “exten-
sion formulae”.

Remark 3.2.12. The name “F -comprehension Rule” is justified by the fact,
that it allows simple proofs of (propositional translations of) the comprehen-
sion axiom for formulae in F . Consider the following derivation (where we
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3.3 The AC0-Tait Calculus

omit some side formulae; note that weakening is admissible).

. . . (pi ↔ ϕi),¬(pi ↔ ϕi) . . . ∧

k∧

k(pi ↔ ϕi),¬(p1 ↔ ϕ1), . . . ,¬(pk ↔ ϕk)
∃k

∃k~p
∧

k(pi ↔ ϕi),¬(p1 ↔ ϕ1), . . . ,¬(pk ↔ ϕk)
F -comprehension

∃k~p
∧

k(pi ↔ ϕi)

It should be noted that the height of this derivation only depends on the ϕi

and is independent of k. Proposition 3.3.11 will provide the needed proofs
of the first sequents and will actually show that the heights depend only on
the depths of ϕi’s.

3.3 The AC0-Tait Calculus

Definition 3.3.1 (AC0-Tait). The AC0 extended Frege calculus in Tait-style
presentation, or AC0-Tait for short, is the calculus given by the following
rules.

• The propositional rules (Definition 3.2.2).

• The parameter extensionality rule (Definition 3.2.4).

• The rules of quantification (Definition 3.2.6).

• The cut-rule (Definition 3.2.8) with cut-formulae restricted to purely
propositional formulae.

• The multi-cut rule (Definition 3.2.9).

• The comprehension rule (Definition 3.2.11) for purely propositional for-
mulae.

We assume all our proofs to be tree-like. This is not a restriction, as we
only look at the height (not the size) of proofs.

Immediately by inspection of the rules, we note that weakening is admis-
sible. This will be used tacitly in the sequel.

Remark 3.3.2. Obviously, the restricted cut-rule in Definition 3.3.1 of AC0-
Tait is subsumed by the multi-cut rule. However, we will later (in Defini-
tion 3.3.4) consider a variant of the AC0-Tait calculus with a more liberal cut
rule. To have a uniform transition between these calculi it seems natural to
have the cut-rule always present and only change the set of formulae that
may be cut on, despite the fact that it is superfluous in AC0-Tait.
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3 RELATIVISED QUANTIFIED PROPOSITIONAL LOGIC

Definition 3.3.3. An AC0-Tait proof is called w, c-slim, if all formulae oc-
curring in the proof have size at most w, each multi-cut rule has width at
most c, and each comprehension rule has at most c extension variables.

We write ⊢h
w,c Γ to denote that Γ has an AC0-Tait proof of height at most

h that is w, c-slim.

The calculus AC0-Tait is our analogue to what in usual proof theoretic
investigations corresponds to cut-free proofs. So we also consider a variant
with proper cuts. As we shall see in Subsection 3.4, cuts can be eliminated at
the usual price, that is, one exponentiation per quantifier alternation (Corol-
lary 3.4.9). For this purpose we can treat ∃k and

∨

k as belonging to the
same “block of quantifiers” (compare Definition 3.1.22).

Definition 3.3.4 (AC0-Tait with C-Cuts). If C is a set of formulae that
contains all the purely propositional formulae and is closed under atomic
substitutions we define the calculus “AC0-Tait with C-cuts” to be AC0-Tait,
but with the cut rule liberalised to formulae in C.

We write d ⊢h
C;w,c Γ to denote that d is an AC0-Tait with C-cuts proof of

Γ of height at most h that is w, c-slim. Note that this implicitly also implies
that C is closed under atomic substitutions.

Remark 3.3.5. The restriction of C to be closed under atomic substitutions
will become clear in Remark 3.3.7, which wouldn’t hold otherwise (see also
the proof of Lemma 3.3.6).

Lemma 3.3.6 (Atomic Substitution of Proofs). Assume that C is closed
under atomic substitutions and let σ be an atomic substitution. If ⊢h

C;w,c Γ
then ⊢h

C;w,c Γσ.

Proof. Induction on the derivation. A p, p̄-axiom might be replaced by a T-
axiom. Note that by first renaming the eigenvariables (using the induction
hypothesis for a different substitution) we can assume that the eigenvariables
do not conflict with the range of σ.

Remark 3.3.7. Lemma 3.3.6 in particular implies that we can always assume
eigenvariables to be chosen sufficiently distinct from everything. This will be
used tacitly in the sequel.

Lemma 3.3.8 (Weakening). If ∆ is a set of formula, each of size at most
w. If ⊢h

C;w,c Γ then ⊢h
C;w,c Γ,∆.

Proof. Induction on the derivation. Each rule can be reproduced identically;
however compare Remark 3.3.7 which explains the need of C being closed
under atomic substitutions—an assumption implicit in the definition of ⊢h

C;w,c

Γ.
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3.4 Cut-Elimination

Lemma 3.3.9 (Strengthening). If ⊢h
C;w,c Γ,F then ⊢h

C;w,c Γ.

Proof. Induction on the derivation. Each rule can be reproduced identically.
Note that there is no rule with F as principal formula.

Remark 3.3.10. Weakening and strengthening will be used tacitly in the
sequel.

Proposition 3.3.11. There is a C ∈ N such that ⊢C·dp(A)
sz(A),0 A,¬A

Proof. Induction on A. The derivations

p, p̄ T,F αk(℘1, . . . , ℘k), ᾱk(℘1, . . . , ℘k)

. . .

Ai,¬Ai
∨

k A1 . . . Ak,¬Ai . . .
∨

k A1 . . . Ak,
∧

k(¬A1) . . . (¬Ak)

A(~a),¬A(~a)

A(~a), ∃k~p.¬A(~p)

∀k~p.A(~p), ∃k~p.¬A(p)

are as desired.

3.4 Cut-Elimination

Lemma 3.4.1 (
∧

k-Inversion). If ⊢h
C;w,c Γ,

∧

k
~A then ⊢h

C;w,c Γ, Ai.

Proof. Induction on the derivation. We can always use the induction hy-
pothesis, except in the case of a

∧

k-rule introducing
∧

k
~A. Here one of the

premises is as desired.

Corollary 3.4.2 (∧-Inversion). If ⊢h
C;w,c Γ, A∧B then ⊢h

C;w,c Γ, A and ⊢h
C;w,c

Γ, B.

Proof. This is the case k = 2 in Lemma 3.4.1.

Lemma 3.4.3 (
∨

k-Inversion). If ⊢h
C;w,c Γ,

∨

k
~A then ⊢h

C;w,c Γ, A1, . . . , Ak.

Proof. Induction on the derivation. We can always use the induction hy-
pothesis, except in the case of a

∨

k-rule introducing
∨

k
~A. Here the premise

is as desired.

Corollary 3.4.4 (∨-Inversion). If ⊢h
C;w,c Γ, A ∨ B then ⊢h

C;w,c Γ, A,B.

Proof. This is the case k = 2 in Lemma 3.4.3.

Lemma 3.4.5 (∀k-Inversion). If ⊢h
C;w,c Γ, ∀k~pA(~p) then ⊢h

C;w,c Γ, A(~℘).
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3 RELATIVISED QUANTIFIED PROPOSITIONAL LOGIC

Proof. Every rule can be reproduced identically, except an ∀k-rule introduc-
ing ∀k~pA(~p). Note that by Remark 3.3.7 we may assume the ~℘ not to interfere
with any eigenvariable condition.

In the case of a an ∀k-rule concluding Γ, ∀k~pA(~p) from Γ, ∀k~pA(~p), A(~a)
with eigenvariables~a we first use the induction hypothesis to get Γ, A(~℘), A(~a)
and then use Lemma 3.3.6 to get Γ, A(~℘), A(~℘), noting that eigenvariable
condition ensures that the substitution does not affect Γ or A(~℘).

Theorem 3.4.6. Assume that ⊢h′

C;w,c Γ, A1, . . . , Ak for some A1, . . . , Ak ∈ ΣC

and assume that for all 1 ≤ i ≤ k we have ⊢h
C;w,c Γ,¬Ai. Then ⊢h′+h+k

C;w,c Γ.

Proof. Induction on the first derivation, or, equivalently, induction on h′.
We can reproduce all rules identically, except for those where the principal
formula is among the ~A. According to Definition 3.1.22 we distinguish the
following cases.

• Case the last rule introduced a formula Ai ∈ C, without loss of gener-
ality the formula Ak.

So, assume that ℓ ∈ N is a natural number and from derivations
⊢h′

C;w,c Γ, A1, . . . , Ak−1, Ak, ~A
◦
j for 1 ≤ j ≤ ℓ it was concluded ⊢h′+1

C;w,c

Γ, A1, . . . , Ak−1, Ak by a rule with principal formula Ak, and premises
~A◦

j for 1 ≤ j ≤ ℓ. Here we allow the case h′ = 0 if ℓ = 0, that is, if the
rule had no premises.

Apply the induction hypothesis to all ℓ subderivations, considering Ak

and ~A◦
j as part of the context(!), so that only k − 1 formulae have to

be removed. This yields derivations ⊢h′+h+k−1
C;w,c Γ, Ak, ~A

◦
j for 1 ≤ j ≤ ℓ.

Now argue as follows.

. . . ⊢h′+h+k−1
C;w,c Γ, Ak, ~A

◦
j . . .

(1 ≤ j ≤ ℓ)
⊢h′+h+k
C;w,c Γ, Ak ⊢h

C;w,c Γ,¬Ak
Cut

⊢h′+1+h+k
C;w,c Γ

Note that this derivation is as desired.

• Case the last rule introduced a formula Ai ∈ ΣC \ C of the shape
∨

ℓ
~B,

without loss of generality, assume it was the formula Ak.

So assume that Ak ≡
∨

ℓ
~B. Since Ak 6∈ C we may, by Definition 3.1.22

of the Σ-closure, conclude that ~B ∈ ΣC.
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3.4 Cut-Elimination

Moreover, assume that from ⊢h′

C;w,c Γ, A1, . . . , Ak, Bj0 for some 1 ≤ j0 ≤

ℓ it was concluded ⊢h′+1
C;w,c Γ, A1, . . . , Ak.

By the assumption of this theorem, we have a derivation ⊢h
C;w,c Γ,¬

∨

ℓ
~B.

Apply
∧

ℓ-inversion (Proposition 3.4.1) to this derivation to obtain an
additional derivation ⊢h

C;w,c Γ,¬Bj0 .

Now apply the induction hypothesis to ⊢h′

C;w,c Γ, A1, . . . , Ak, Bj0 elimi-

nating the k + 1 formulae A1, . . . , Ak, Bj0, obtaining ⊢h′+1+k
C;w,c Γ as de-

sired.

• Case the last rule introduced a formula Ai ∈ ΣC \ C of the shape
∃ℓ~pA

◦(~p), without loss of generality assume that it was the formula Ak.

By the Definition 3.1.22 of the Σ-closure we may conclude A◦(~p) ∈ ΣC;
see also Remark 3.1.23.

So assume that from ⊢h′

C;w,c Γ, A1, . . . , Ak, A
◦(~℘) for some ~℘ ∈ A it was

concluded ⊢h′+1
C;w,c Γ, A1, . . . , Ak.

By the assumption of this theorem, we have a derivation ⊢h
C;w,c

Γ, ∀ℓ~p¬A◦(~p). Apply Lemma 3.4.5 to this derivation in order to ob-
tain an additional derivation ⊢h

C;w,c Γ,¬A◦(~℘).

Now apply the induction hypothesis to ⊢h′

C;w,c Γ, A1, . . . , Ak, A
◦(~℘) elim-

inating the k + 1 formulae A1, . . . , Ak, A
◦(~℘). This yields ⊢h′+h+k+1

C;w,c Γ,
which is as desired.

Corollary 3.4.7. Let C be closed under atomic substitutions, A ∈ ΣC and
h, h′ ∈ N natural numbers.

If ⊢h′

C;w,c Γ, A and ⊢h
C;w,c Γ,¬A, then ⊢h′+h+1

C;w,c Γ.

Proof. This is the special case k = 1 in Theorem 3.4.6.

Lemma 3.4.8 (Cut Reduction). Assume that C is closed under atomic sub-
stitutions.

If ⊢h
ΣC;w,cΓ then ⊢2h−1

C;w,c Γ.

Proof. First note that 2h − 1 ≥ h for all h ≥ 0 and that 2h − 1 is strictly
monotonic in h.

We prove the claim by induction on the derivation. We can reproduce
every rule, except for a cut. So assume that ⊢h+1

ΣC;w,cΓ was concluded from

⊢h
ΣC;w,cΓ, A and ⊢h

ΣC;w,cΓ,¬A by a cut. By our assumption on the cut-formulae
we obtain A ∈ ΣC.
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3 RELATIVISED QUANTIFIED PROPOSITIONAL LOGIC

Apply the induction hypothesis to both subderivations in order to ob-
tain ⊢2h−1

C;w,c Γ, A and ⊢2h−1
C;w,c Γ,¬A. Now apply Corollary 3.4.7 to obtain

⊢(2h−1)+(2h−1)+1
C;w,c Γ which is as desired, since (2h − 1) + (2h − 1) + 1 = 2h +

2h − 1 = 2h+1 − 1.

Corollary 3.4.9. Assume that C is closed under atomic substitutions.
If ⊢h

ΣC;w,cΓ then ⊢2h

C;w,c Γ.

Proof. Immediately from Lemma 3.4.8

Knowing how to eliminate on level of quantifier alternation, we get the
usual bounds for several quantifier alternations.

Proposition 3.4.10. If ⊢h
Σq

k
(α);w,cΓ then ⊢2k(h)

Σq
0(α);w,c

Γ.

Proof. Induction on k. If k = 0 the claim is trivial. For the inductive step
we use Corollary 3.4.9 noting that ⊢h

Σq
k
(α);w,cΓ if and only if ⊢h

Πq
k
(α);w,cΓ by the

symmetry of cuts.
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4 The Sequential Iteration Principle

As mentioned in the introduction to Section 3, the calculus AC0-Tait has a
strong connection to the height of boolean circuits. This section will make
this connection precise.

We will first (in Subsection 4.1) introduce iteration as an inherently se-
quential concept. This sequentiality is witnessed by the fact that circuits
(of sub-exponential height) can only iterate as far as their height (The-
orem 4.1.9). Formalising this principle in propositional logic (in Subsec-
tion 4.2) will yield a family of formulae that cannot have shallow proofs
(Theorem 4.2.17). In fact, the lower bound on the height grows exponen-
tially with the size of these formulae (Corollary 4.2.19). A minor variation
(in Subsection 4.3) of these propositional formulae directly show the connec-
tion to circuit evaluation. Theorem 4.3.9 (together with Lemma 4.3.3) proves
that, up to an additive constant, the height of a proof is the height of that
very circuit of which it is proved that it can be evaluated.

Even though these results are highly encouraging, they heavily depend on
the fact that we use relativised quantified propositional logic. To make these
limits of the method more explicit we introduce (in Subsection 4.4) a calculus
AC⋆-Tait that extends AC0-Tait in that it allows comprehension for arbitrary
α-free formulae. So its strength is unlimited for unrelativised computations.
Nevertheless, the same boundedness result holds (Theorem 4.4.5). We will
later (in Subsection 6.4) use this calculus as target for translating VNL(α)
proofs into constant height propositional proofs. But already at this point it
is instructive to see the limitations of the chosen method as well, besides all
its potential and benefits.

4.1 Iteration as Sequential Principle

In this subsection we introduce our main measure of strength and show (in
Lemma 4.1.12) that it can be used to separate the ACk(α)-hierarchy. In later
parts we will see how this measure can be applied in various ways to give
meaningful results.

Our measure will very traditionally measure the amount of sequential
time a model of computation can simulate. Parallel computation allows
for reasonable complexity classes with sublinear time. As we shall see, our
measure will be useful for the full range from constant to exponential growth.

The prototypical model for parallel computation are circuits and the no-
tion of “time” here is the height of the circuits. So we use circuits as a point
of reference to make sure our measure is well calibrated. We build on work
by Takeuti [63] who developed a technique to separate some theories in weak
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4 THE SEQUENTIAL ITERATION PRINCIPLE

bounded arithmetic.
The idea is that computing the k’th iteration fk(0) = f(f(. . . (f(0)))) of

a function f is essentially a sequential procedure, whereas shallow circuits
represent parallel computation. So a circuit performing well in a sequential
task has to be of big height. To avoid that the sequential character of the
problem can be circumvented by precomputing all possible values, the domain
of f is chosen big enough; we will consider functions f : [2n] → [2n].

Of course with such a big domain, we cannot represent such functions
simply by a value table. That’s how oracles come into play: oracles allow
us to provide a predicate on strings as input, without the need of having an
input bit for every string. In fact, the number of bits potentially accessible
by an oracle gate is exponential in the number of its input wires.

Therefore we represent the i’th bit of f(x) for x ∈ {0, 1}n by whether
or not the string xi belongs to the language of the oracle. Recall (Nota-
tion 2.1.41) that i is some canonical coding of the natural number i using
log(n) bits.

Our argument can be summarized as follows. We assume a circuit of
height h be given that supposedly computes the ℓ’th iterate of any function
f given by the oracle. Then we construct, step by step, an oracle that fools
this circuit, if ℓ > h. To do so, for each layer of the circuit we decide how to
answer the oracle questions, and we do this in a way that is consistent with
the previous layers and such that all the circuit at layer i knows about f is
at most the value of f i(0). Of course, to make this step-by-step construction
possible we have to consider partial functions during our construction.

Definition 4.1.1 (ℓ-sequential). A partial function f : [2n] ⇀ [2n] is called
ℓ-sequential if for some k ≤ ℓ it is the case that 0, f(0), f 2(0), . . . , fk(0) are
all defined, but fk(0) 6∈ dom(f).

Remark 4.1.2. In Definition 4.1.1 it is necessarily the case that
0, f(0), f 2(0), . . . , fk(0) are distinct.

Proof. If, say, f i(0) = f i+d(0) for some d > 0, and i + d ≤ k then also
fk−d(0) = fk(0) and, in particular, fk(0) ∈ dom(f), as fk−d+1(0) is defined.

Example 4.1.3. The empty function is ℓ-sequential for any ℓ ∈ N. If f is a
partial function with f(0) = 0 then f is not ℓ-sequential for any ℓ.

Lemma 4.1.4. Let n ∈ N and f : [2n] ⇀ [2n] be an ℓ-sequential partial
function. Moreover, let M ⊂ [2n] such that |dom(f) ∪M | < 2n. Then there
is an (ℓ+ 1)-sequential extension f ′ ⊇ f with dom(f ′) = dom(f) ∪M .
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4.1 Iteration as Sequential Principle

Proof. Let a ∈ [2n] \ (M ∪ dom(f)). Such an a exists by our assumption on
the cardinality of M ∪dom(f). Let f ′ be f extended by setting f ′(x) = a for
all x ∈M \ dom(f). This f ′ is as desired.

Indeed, assume that 0, f ′(0), . . . , f ′ℓ+1(0), f ′ℓ+2(0) are all defined. Then,
since a 6∈ dom(f ′), all the 0, f ′(0), . . . , f ′ℓ+1(0) have to be different from a.
Hence these values have already been defined in f . But this contradicts the
assumption that f was ℓ-sequential.

Definition 4.1.5 (Bit Graph Function, Bit Graph Oracle). To any natural
number n and any partial function f : [2n] ⇀ [2n] we associate its bit graph
αn,f as a partial function αn,f : {0, 1}n+logn ⇀ {0, 1} in the obvious way.
More precisely, αn,f(uv) is the i’th bit of f(x) if f(x) is defined, and undefined
otherwise, where u is a string of length n coding the natural number x and
v is a string of length log n coding the natural number i.

If f : [2n] → [2n] is a total function, we define the bit graph oracle to be
the set Af = {x | αn,f(x) = 1} ⊆ {0, 1}n+log n.

Remark 4.1.6. Immediately from Definition 4.1.5 we note that f can be
uniquely reconstructed from Af .

Notation 4.1.7. If A ⊆ {0, 1}∗ is an oracle, we denote by A[n] = {x ∈ A |
|x| = n + logn} the set of all strings in A of length n+ log n.

We now are mainly concerned with circuits with no inputs. For these
circuits, the output only depends on the oracle. Requiring, however, that
the output has a certain dependency on the oracle, the computational task
becomes non-trivial. Before we (in Theorem 4.1.9) show a lower bound on
the height of such a circuit solving a particular task, we make a simple
observation which will show that the bound obtained is optimal.

Proposition 4.1.8. Let n be a natural number. For every h there is a circuit
Ch with no inputs, height h+1 and size h ·n+2 such that for every oracle A
the circuit Ch computes fh(0) for the (uniquely determined) f : [2n] → [2n]
such that Af = A[n].

Proof. At level 0 the circuit has two nodes that will represent the constants
0 and 1, i.e., we have an or-gate and an and-gate, both with no inputs.

At level i for 1 ≤ i ≤ h, we have n oracle gates ci,0, . . . , ci,n−1. All the
oracle gates have n+logn inputs. The inputs n . . . n+logn−1 of ci,j code the
numeral j. Here the constant gates at level 0 are used. The inputs 0 . . . n−1
code the function computed at the lower level; that is, if i > 1, then they
are the nodes ci−1,0 . . . ci−1,n−1 and if i = 1 we just use n times the constant
0 node.

It is easy to see that the circuit has the desired properties.
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Theorem 4.1.9. Let C be any circuit with no inputs of depth h and size
strictly less then 2n. If C on oracle A computes correctly the last bit of f ℓ(0)
for the (uniquely determined) f : [2n] → [2n] such that Af = A[n], and if this
is true for all oracles A, then ℓ ≤ h.

Proof. Assume that such a circuit computes f ℓ(0) correctly for all oracles.
We have to find an oracle that witnesses ℓ ≤ h. First fix the oracle arbitrarily
on all strings of length different from n + log n. So, in effect we can assume
that the circuit only uses oracle gates with n + logn inputs.

By induction on k ≥ 0 we define partial functions fk : [2n] ⇀ [2n] with the
following properties. (Here we number the levels of the circuit 0, 1, . . . , h−1.)

• f0 ⊆ f1 ⊆ f2 ⊆ . . .

• The size |dom(fk)| of the domain of fk is at most the number of oracle
gates with level strictly smaller than k.

• αn,fk
determines the values of all oracle gates at levels strictly smaller

than k.

• fk is k-sequential.

We can take f0 to be the totally undefined function, since f 0(0) = 0 by
definition. As for the induction step let M be the set of all x of length n
such that, for some i < n, the string xi is queried by an oracle gate at level
k and let fk+1 be a k+1-sequential extension of fk to domain dom(fk) ∪M
according to Lemma 4.1.4.

For k = h we get the desired bound. As αn,fh
already determines the

values of all gates, the output of the circuit is already determined, but fh+1(0)
is still undefined and we can define it in such a way that it differs from the
output of the circuit.

Remark 4.1.10. Inspecting the proof of Theorem 4.1.9 we note that it
does not at all use what precisely the non-oracle gates compute, as long as
the value only depends on the input, not on the oracle. In particular, the
proof still holds if we consider subcircuits without oracle gates as a single
complicated gate.

An immediate consequence of Theorem 4.1.9 is, that the ACk(α)-classes
form a strict hierarchy.

Definition 4.1.11 (LA
g ). If g : N → N is a function from the natural numbers

to the natural numbers, and A ⊆ {0, 1}∗ an oracle, we define the language

LA
g = {x | the last bit of f g(n)(0) is 1,

where n = |x| and f is such that A[n] = Af}
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We note that in Definition 4.1.11 the f is uniquely determined by A and
the length of x.

Lemma 4.1.12. ACk(α) 6= ACk+1(α)

Proof. We applying Proposition 4.1.8 to h = logk+1(n) and extend the ob-
tained circuit Clogk+1(n) to a circuit C ′

n by adding n dummy input-nodes, and,
at the same time, restrict the output list to its last element. Then (C ′

n)n∈N

obviously is an ACk+1(α)-circuit computing, parametrised by oracle A, the
language LA

logk+1.

Now assume, for the sake of contradiction, that (Dn)n∈N is an ACk(α)-
circuit computing LA

logk+1. Using that the Dn have polynomial, and hence

in particular subexponential size, Theorem 4.1.9 now tells us, that, for large
enough n, the circuit Dn has to have size logk+1(n). But this contradicts our
assumption, as logk+1 6∈ O(logk).

For the uniform circuit classes, we can even show a stronger result: a
single oracle is enough to separate them all.

Definition 4.1.13 (U-uniform h, s-circuits). Let U be a notion of uniformity,
and h, s : N → N functions. The U-uniform h, s-circuits are those circuit
families (Cn)n∈N ∈ U of U such that Cn has depth at most h(n) and size at
most s(n).

Theorem 4.1.14. Let U be a notion of uniformity and hc a family of func-
tions such that for all c ∈ N the function hc+1 eventually strictly dominates
hc. Moreover, let sc be a family of strictly subexponentially growing functions.
Then there is a single oracle A ⊆ {0, 1}∗ that simultaneously witnesses that
LA

hc+1
cannot be computed by U-uniform hc, sc-circuits.

Proof. Let C0, C1, . . . an enumeration of U . Let (ci, ki) be an enumeration of
all pairs of natural numbers.

We will construct natural numbers ni, and sets Ai such that the following
properties hold.

• The ni strictly increase.

• Ai contains only strings of length ni + log(ni).

• If Cki
= (Cki

n )n∈N and Cki
ni

has depth at most hci
(ni) and size at most

sci
(ni) then the language of Cki

ni
with oracle

⋃

j≤iAj differs from L
S

j≤i Aj

hci+1
∩

{0, 1}ni, and Cki
ni

contains no oracle gates with ni+1 +log(ni+1) or more
inputs.
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4 THE SEQUENTIAL ITERATION PRINCIPLE

Obviously
⋃

iAi will be as desired.

At stage i take ni big enough, so that it is bigger than all the previous
nj’s and that ni + log(ni) is bigger than the maximal fan-in of all the oracle
gates in all the circuits looked at so far; moreover take ni big enough such
that sci

(ni) < 2ni and hci
(ni) < hci+1(ni) which is possible as sci

has strictly
subexponential growth and hci+1 dominates hci

eventually.

Look at the ni’th circuit in the circuit family Cki
, and call it C. We

may assume that C has height at most hci
(ni) and size at most sci

(ni) for
otherwise there is nothing to show and we can choose Ai an arbitrary subset
of {0, 1}ni+log(ni), say the empty set.

By Theorem 4.1.9 we find an Ai ⊂ {0, 1}ni+log(ni) such that C with oracle
⋃

j≤iAi does not solve the decision problem associated with fhci+1(ni)(0) for
f given by Af = Ai.

Corollary 4.1.15. Let U be a notion of uniformity. Then there is a single
oracle A ⊆ {0, 1}∗ that witnesses the strictness of the U-uniform ACk(α)-
hierarchy.

4.2 Bounds in Propositional Logic

In Section 4.1 we have seen that iteration is a useful principle to separate
circuits according to their height. We now go one step further and formalise
this principle in propositional logic. This will give us lower bounds on the
proof height in AC0-Tait Calculus.

In this subsection we assume that n is big enough, so that n+log(n) and
2n are different. Note that this is the case if n ≥ 1.

The intended meaning of αn+log n and α2n is that they fix the values of
a function f : [2n] → [2n] in the following way: αn+log n(i, x) is true iff the
i’th bit of f(x) is 1, and α2n(i, x) is true iff f i(0) = x, where f i(0) is the
result of computing the i’th iteration of f on 0. Storing f by its bitgraph
αn+log n automatically guarantees that a total function on [2n] is described, a
property which would otherwise require adding more complex quantification
to our principle.

Definition 4.2.1. We write “f(p1, . . . , pn ) = q1, . . . , qn ” for
∧

i<n(qi ↔
αñ(i, ~p )) where ñ = n+ log(n). We write “~p = ~q ” for

∧

i<n(pi ↔ qi).

Definition 4.2.2. We write “f p1,...,pn(0) = q1, . . . , qn ” for α2n(~p, ~q).

It should be noted that “f(0 ) = ~q ” and “f 1(0) = ~q ” are not only different
formulae, but are not even logically equivalent.
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4.2 Bounds in Propositional Logic

Definition 4.2.3. We write “p0, . . . , pn−1 = q0, . . . , qn−1 +1” for the obvious
AC0-formulation of the successor relation, that is, for

∨

i

(
∧

j<i

pj ∧ ¬pi ∧
∧

j<i

¬qj ∧ qi ∧
∧

j>i

(pj ↔ qj)) .

Our iteration principle will express that α2n stores the graph of i 7→ f i(0)
for i = 0, . . . , ℓ. Here ℓ ≤ n is a fixed number. Using the common idea that
∃x.f i(0) = x expresses that f i(0) can be computed, we can argue as follows.
If f 0(0) can be computed but f ℓ(0) cannot, then there must be some i such
that f i(0) can be computed but f i+1(0) cannot. The crux is now that this
can be expressed using existential quantifiers only, which makes use of the
trick that we are storing f by it’s bit-graph. If f 0(0) = 0 and no m exists
with f ℓ(0) = m, then there are m,m′, i, i′ with i′ = i+ 1 and f i(0) = m and
f(m) = m′ and not f i′(0) = m′. Prenexing this description and identifying
the two independent occurrences of m gives us the following iteration formula
and principle.

Definition 4.2.4. The n, ℓ-iteration formula Φn,ℓ is the following purely
propositional formula

Φn,ℓ(~p, ~p
′, ~q, ~q ′) ≡

“f ℓ(0) = ~p ” ∨ ¬“f 0(0) = 0 ”
∨ (“~q ′ = ~q + 1” ∧ “f ~q(0) = ~p ” ∧ “f(~p ) = ~p ′ ” ∧ ¬“f ~q ′

(0) = ~p ′ ”)

The n, ℓ-iteration principle is the formula

∃4n~p~p
′~q~q ′. Φn,ℓ(~p, ~p

′, ~q, ~q ′) .

Definition 4.2.5. A partial propositional assignment is a finite partial map-
ping from the propositional variables to {T,F}.

A partial parameter assignment is any partial mapping (not necessarily
finite) from atomic parameters αk(~℘), with ℘i ∈ {T,F}, to {T,F}.

Notation 4.2.6. In the context of propositional logic, we use “valuation” as
another word for partial (propositional or parameter) assignment. We use η
to range over valuations. In accordance with set theoretic notions we write
the empty valuation as ∅.

Definition 4.2.7 (Aη). If A is a quantified propositional formula and η a
partial propositional assignment, we define Aη by induction on A. For p a
propositional variable with p ∈ dom(η) we set pη ≡ η(p) and p̄η ≡ ¬η(p).
For p 6∈ dom(η) we set pη ≡ p and p̄η ≡ p̄. The remaining cases are defined

51



4 THE SEQUENTIAL ITERATION PRINCIPLE

homomorphically, e.g., (
∧

k
~A)η ≡

∧

k
~Aη. In particular αk(℘1, . . . , ℘k)η ≡

αk(℘1η, . . . , ℘kη).
If A is a closed purely propositional formula and η a partial parameter

assignment, we define Aη by induction on A. For αk(~℘) with αk(~℘) ∈ dom(η)
we set (αk ~℘)η ≡ η(αk(~℘)) and (ᾱk ~℘)η ≡ ¬η(αk(~℘)). Otherwise we set
(αk ~℘)η ≡ αk(~℘) and (ᾱk ~℘)η ≡ ᾱk(~℘). The remaining cases are defined
homomorphically.

Notation 4.2.8. If Γ = {A1, . . . , Ak} is a set of formulae we write Γη for
{A1η, . . . , Akη}.

By a trivial induction on A we get

Proposition 4.2.9. ¬(Aη) ≡ (¬A)η

Note the difference between a partial assignment, where the range is in
{T,F} and a substitution, where the range can be more liberal. In particular,
the range of a partial assignment cannot be moved any more. This is made
precise in the following lemma that will be used tacitly in the sequel.

Lemma 4.2.10. If η ⊂ η′ are partial propositional assignments and A is a
quantified propositional formula such that Aη is closed, then Aη ≡ Aη′.

If η ⊂ η′ are partial parameter assignments and A is a closed purely
propositional formula such that Aη is α-free, then Aη ≡ Aη′.

Proof. Trivial induction on A.

Definitions 4.1.1 and 4.2.11 encode the crucial idea of our proof of the
boundedness Theorem 4.2.17. Eventually we will be working upwards through
a single path of a given proof, and partially define a function f : [2n] ⇀ [2n]
in order to falsify all quantifier free formulae on this path. We want to do
this in such a way, that, at level h, only 0, f(0), . . . , fh−1(0) are defined. But,
to assign a truth value to a quantifier free formula, we not only have to set
the parameter bits that encode the relation “f(x ) = y ”, but also those that
encode the iterations of f of the form “fk(0) = y ”.

The idea is to assign them values consistent with what we have so far and
also consistent with our strategy on how we plan to extend f . As we want
to keep fh(0) undefined, all the values in dom(f) are “forbidden” anyway for
the next extension of f . Note that, if f i(0) is defined and f i(0) = f j(0) for
some i < j, then all the values fk(0) are already defined.

Definition 4.2.11 (ηf). If n ∈ N is a natural number and f : [2n] ⇀ [2n]
a partial function, we associate with f , or actually the pair n, f , a partial
parameter assignment ηf as follows.
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For j ∈ [n], x ∈ [2n] with f(x) defined, say f(x) = 〈~r 〉 ∈ [2n], we set
ηf (αn+log(n)(j, x)) = rj . Otherwise ηf (αn+log(n)(j, x)) is undefined.

For x, ℓ ∈ [2n] we set α2n(ℓ, x) = T if f ℓ(0) is defined and equal to x;
otherwise we set α2n(ℓ, x) = F if x ∈ dom(f); otherwise α2n(ℓ, x) is undefined.

For k 6∈ {2n, n + log(n)} we set ηf(αk(~℘)) arbitrarily, say F. Also, if
~p ∈ {T,F}log n \ [n], we set αn+log n(~p, ~q) arbitrarily, say F.

“Good extensions” of partial functions are those that comply with the
above idea, that is, those that do not assign new values that are already in
the domain.

Definition 4.2.12. If f, f ′ : [2n] ⇀ [2n] are partial functions, and f ⊂ f ′

then f ′ is called a good extension of f , if ∀x ∈ dom(f ′)(x ∈ dom(f)∨ f ′(x) 6∈
dom(f)).

Remark 4.2.13. If f ⊂ f ′ and f ′ ⊂ f ′′ are good extensions, then so is
f ⊂ f ′′.

Proof. Let x ∈ dom(f ′′) and assume x 6∈ dom(f). We have to show that
f ′′(x) 6∈ dom(f). If x ∈ dom(f ′) then f ′′(x) = f ′(x) 6∈ dom(f), since f ⊂ f ′

is a good extension; otherwise x 6∈ dom(f ′), so f ′′(x) 6∈ dom(f ′) ⊃ dom(f),
since f ′ ⊂ f ′′ is a good extension.

Proposition 4.2.14. If f ⊂ f ′ is a good extension, then ηf ⊂ ηf ′.

Proof. By inspecting Definition 4.2.11 we note that the only case we have to
exclude is, that ηf (α2n(ℓ, x)) = F and ηf ′(α2n(ℓ, x)) = T.

This might happen, if x ∈ dom(f) and f ℓ(0) is undefined, but f ′ℓ(0) = x.
Let k be maximal such that fk(0) is defined. Clearly 0 ≤ k < ℓ. By induction
on i we show that for i < ℓ we have f ′(ℓ−i)(0) ∈ dom(f). For i = ℓ − k this
gives the desired contradiction, since dom(f) ∋ f ′(ℓ−(ℓ−k))(0) = f ′k(0) = fk(0)
would imply that fk+1(0) is defined.

For i = 0 nothing is to show, since f ′ℓ(0) = x ∈ dom(f). So let 0 < i < ℓ.
By induction hypothesis we know dom(f) ∋ f ′ℓ−(i−1)(0) = f ′(f ′ℓ−i(0)) and,
since f ⊂ f ′ is good, we conclude that f ′ℓ−i(0) was already in the domain of
f .

Inspecting the proof of Lemma 4.1.4 we note that the partial function
f ′ constructed there is not only an extension of f , but indeed a good one.
Recall that the value a chosen to be assigned to all points that have to enter
the domain is taken from outside the domain.

This observation is formalised as
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Lemma 4.2.15. Let n ∈ N and f : [2n] ⇀ [2n] be an ℓ-sequential partial
function. Moreover, let M ⊂ [2n] such that |dom(f) ∪M | < 2n. Then there
is an (ℓ+ 1)-sequential good extension f ′ of f with dom(f ′) = dom(f) ∪M .

Lemma 4.2.16. For every closed, purely propositional, formula A of size ℓ
there is a set M ⊂ [2n] such that |M | ≤ ℓ and for every function f with
M ⊂ dom(f) it holds that Aηf is α-free.

Proof. Let M be the set of all x ∈ [2n] such that an atom of the form
αn+log(n)(j, x) or α2n(k, x) occurs in A.

Note that x ∈ dom(f) forces ηf(α2n(k, x)) to have a definite value (F
unless fk(0) = x, in which case it would be T).

Theorem 4.2.17. Let k, n, w, c be natural numbers with c · w ≥ 2. Assume
⊢h

w,c Γ with Γ = ∆, ∃4n~rΦn,ℓ(~r), where Φn,ℓ is the n, ℓ-iteration formula. Let
η be a partial propositional assignment and f : [2n] ⇀ [2n] be k-sequential.
Assume |dom(f)| + cwh < 2n. If each element of ∆ is purely propositional,
and ∆ηηf closed, α-free, and false then ℓ ≤ k + h.

Proof. We argue by induction on h with case distinction according to the
last rule of the proof.

The last rule cannot be a propositional axiom, as axioms cannot have
∃4n~rΦn,ℓ(~r) as a principal formula; however, all the formulae in ∆ηηf are
false so ∆ cannot be a tautology, as it would have to be, as the calculus is
sound. In the case of an

∨

k-inference apply the induction hypothesis, in the
case of an

∧

k-inference, the induction hypothesis is applicable to at least
one of the subderivations. The last rule cannot be an ∀j-rule as this would
require a quantified formula in ∆.

If the last rule is a multi-cut rule

. . . Γ,∆i . . .
Γ

we know, since the proof is w, c-slim, that
⋃

i ∆i contains at most c formulae
of size at most w. Let η′ ⊃ η such that all ∆iη

′ are closed. Let M be the
union of the sets asserted by Lemma 4.2.16 for the formulae in

⋃

i ∆iη
′. Then

|M | ≤ c · w. We extend f in a good way to some (k + 1)-sequential f ′ with
dom(f ′) = dom(f)∪M . Noting that all the ∆iη

′ηf ′ are sets of α-free, closed,
purely propositional formulae we can assign them truth values. Since, by
cuts we can derive the empty sequent from the sets ∆i, and hence also from
the sets ∆iη

′ηf ′ , one of them has to contain only false formulae. Apply the
induction hypothesis to this subderivation.

The case of a cut rule is similar, but easier.
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Assume that the last rule was a parameter extensionality rule as follows.

Γ, αj(℘1, . . . , ℘j) . . . Γ, ℘i ↔ ℘′
i . . . (1 ≤ i ≤ j)

Γ, αj(℘
′
1, . . . , ℘

′
j)

Extend η to some η′ assigning values to all the ~℘. If for some 1 ≤ i ≤ j we
have ℘η′ 6= ℘′η′ we can apply the induction hypothesis to the corresponding
subderivation. Otherwise (αk(~℘ ))η′ηf ≡ (αk(~℘

′))η′ηf and we can apply the
induction hypothesis to the first subderivation.

Assume that the last inference rule was an ∃j-rule.

Γ,Φn,ℓ(~℘, ~℘
′, ~℘ ′′, ~℘ ′′′)

∃4n
Γ

We can extend η to η′ such that there are natural numbers m,m′, i, i′ such
that ~℘η′ = m, ~℘ ′η′ = m′, ~℘ ′′η′ = i and ~℘ ′′′η′ = i′. If ℓ ≤ k there is nothing
to show. Otherwise, we will argue as follows that Φn,ℓ(m,m

′, i, i′)ηf ′ can be
falsified by choosing an appropriate (k+1)-sequential good extension f ′ of
f . Since ℓ > k, for every good (k+1)-sequential extension f ′ of f we have
f ′(ℓ+1)(0) undefined. Hence for any such f ′ with m ∈ dom(f ′) we know that
f ′(ℓ) is either undefined or different from m (for otherwise f ′(ℓ+1)(0) would be
defined). In either case ηf ′(α2n(ℓ,m)) = F. Recall that adding a value m to
the domain of f ′ ensures that ηf ′(α2n(ℓ,m)) has a definite value. The second
disjunct ¬“f 0(0) = 0 ” is falsified by ηf ′ for any f ′. For the last disjunct
“i′ = i+1”∧“f i(0) = m ”∧“f(m ) = m′ ”∧¬“f i′(0) = m′ ”, we may assume
that i′ = i + 1, for otherwise it is falsified anyway. For any f ′ with m,m′ ∈
dom(f ′) we know that ηf ′ assigns definite truth values to “f i(0) = m ”,
“f(m ) = m′ ”, and “f i′(0) = m′ ”. If the first two conjuncts are assigned
T, than this can only be if f ′i(0) = m and f ′(m) = m′. But in this case
f ′i+1(0) = m′, so ¬“f i+1(0) = m′ ” is assigned F. Altogether we can take any
(k+1)-sequential good extension f ′ of f with dom(f ′) = dom(f) ∪ {m,m′}.
Then Φn,ℓ(~℘, . . .)η

′ηf ′ is α-free, closed, purely propositional and false and we
can apply the induction hypothesis (recalling that we assumed wc ≥ 2).

The last remaining case is that the last rule was a comprehension rule

Γ,¬(p1 ↔ ϕ1), . . . ,¬(pj ↔ ϕj)

Γ

where the ϕi are purely propositional, the ~p are eigenvariables, and, since the
proof is w, c-slim, j ≤ c. Let η′′ ⊃ η be such that all ϕiη

′′ are closed. Let Mi

be the set asserted by Lemma 4.2.16 for ϕiη
′′. Extend in a good way f to a

(k+1)-sequential f ′ with dom(f ′) = dom(f)∪
⋃

iMi. Due to the eigenvariable
condition we can assume without loss of generality that ~p 6∈ dom(η′′). Extend

55



4 THE SEQUENTIAL ITERATION PRINCIPLE

η′′ to η′ by setting pi to the truth value of ϕiη
′′ηf ′. We then can apply the

induction hypothesis.
This finishes the proof.

Corollary 4.2.18. If ⊢h
w,c ∃4n~rΦn,ℓ(~r) and cwh < 2n for some c, w with

cw ≥ 2 then h ≥ ℓ.

Proof. The special case ∆ = ∅, η = ∅, f = ∅, and k = 0 in Theorem 4.2.17.

Corollary 4.2.19. There is a family of polynomial size Σq
1(α)-formula, such

that every AC0-Tait proof with polynomially branching rules and polynomial
size formulae requires exponential height.

Proof. As Corollary 4.2.18 shows, the family (∃4n~rΦn,2n−1(~r))n∈N is as de-
sired. It should be noted that these formuale indeed only grow polynomially,
as, of course, the number 2n − 1 can be represented by n bits.

4.3 Circuit Evaluation

This subsection shows an application of Subsection 4.2. The height of a proof
showing that a circuit can be evaluated is, up to an additive constant, the
height of that very circuit.

Definition 4.3.1 (Circuit-Evaluation Formula). Let C be a circuit with
empty input list and nodes n1, . . . , nk. Then we define the evaluation for-
mula associated with C as the formula ΨC(~p) where p1, . . . , pk are propo-
sitional variables associated with nodes n1, . . . , nk, respectively. ΨC is the
conjunction of the conditions for each node. If the node i is an and-gate,
then the associated condition is

pi ↔
∧

ℓ

pi1 . . . piℓ

where ni1 , . . . , niℓ are the inputs for node i; the conditions for or-gates and
not-gates are similar. In the special cases of an “and” or or–gate without
inputs, we use the constants T and F, respectively.

For an oracle gate, the condition is

pi ↔ αℓ(pi1 , . . . , piℓ)

where αni1 , . . . , niℓ is the labelling of that node. Similarly for a negated
oracle gate.
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4.3 Circuit Evaluation

Remark 4.3.2. It should be noted that ΨC is a formula of constant depth,
irrespective of the shape of the circuit. However, as we shall see, the height
of the proof needed to prove that this circuit can be evaluated depends on
the actual structure of the circuit.

Lemma 4.3.3. If C is a circuit of height h, then there is a proof of height
h+ O(1) for ∃k~pΨC(~p ).

Proof. For 0 ≤ ℓ < h let p
(ℓ)
i1
, . . . , p

(ℓ)
ikℓ

be the variables associated with the

nodes of level ℓ. So a variable p
(ℓ)
i depends only on variables p

(ℓ′)
j for some

ℓ′ < ℓ. We write C
(ℓ)
i for the condition associated with p

(ℓ)
i . Then the

derivation

. . .

Proposition 3.3.11

p
(ℓ)
i ↔ C

(ℓ)
i ,¬(p

(ℓ)
ij

↔ C
(ℓ)
ij

) . . .
(0 ≤ ℓ < h)
(1 ≤ j < kℓ) ∧

ΨC ,¬(~p (h) ↔ ~C (h)), . . . ,¬(~p (2) ↔ ~C(2)),¬(~p (1) ↔ ~C(1))
(∃k)

∃k~pΨC ,¬(~p (h) ↔ ~C(h)), . . . ,¬(~p (2) ↔ ~C(2)),¬(~p (1) ↔ ~C (1))
(comp)

∃k~pΨC ,¬(~p (h) ↔ ~C(h)), . . . ,¬(~p (2) ↔ ~C(2))
(comp)

...
(comp)

∃k~pΨC ,¬(~p (h) ↔ ~C(h))
(comp)

∃k~pΨC

is as desired.

We now show the following lower bound. Consider a proof that a circuit
can be evaluated. If the circuit has height h, then the proof has to have height
at least h−O(1). As we know from Proposition 4.1.8, a circuit of height h+1
can compute the h’th iterate of the function given by α. From the fact that
this circuit can be evaluated, we can conclude that the h-iteration principle
holds. In the following let Ch be the circuit given by Proposition 4.1.8. We
also assume the size parameter n to be understood; we set ñ = n + log n.
Immediately from the definition we get

Proposition 4.3.4. ΨCh
(~w) is the conjunction of the clauses w′

0 ↔ F, w′
1 ↔

T and the conjuncts “f(~w(ℓ) ) = ~w(ℓ+1) ”. The latter is built of the formulae

w
(ℓ+1)
j ↔ αñ(~w(ℓ), ~u(j)) of 0 ≤ ℓ < h − 1 and 0 ≤ j < n, where we used the

abbreviations w
(0)
i ≡ w′

0, and ~u(j) for a list of w′
0 and w′

1 coding the (binary)
numeral j in the obvious way.
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4 THE SEQUENTIAL ITERATION PRINCIPLE

Proof. Immediate by the Definition of the evaluation formula 4.3.1 and the
definition of the circuit Ch in Proposition 4.1.8.

As an immediate consequence we obtain

Proposition 4.3.5. ΨCh
is purely propositional. Moreover there is a con-

stant c such that for all h, n ≥ 1 we have sz(ΨCh
) ≤ c ·n ·h and dp(ΨCh

) ≤ c.

Proof. Immediate from Proposition 4.3.4.

Proposition 4.3.6. For some constant c, if i ∈ [n−1] for some n ≥ 2, ~p = i,
and ~q = i+ 1 then ⊢c

c·log n,1 “~q = ~p+ 1”.

Proof. Immediately from Definition 4.2.3 of the successor relation and propo-
sitional logic in AC0-Tait.

In the following, for 1 ≤ ℓ < n, we set ∆ℓ ≡ ¬“f ℓ−1(0) = ~w(ℓ−1) ”, “f ℓ(0) =
~w(ℓ) ”. Recall that “f ~p(0) = ~q ” is a shorthand for α2n(~p, ~q). So, by resolution
the ∆ℓ imply ¬“f 0(0) = ~w(0) ”, “fh(0) = ~w(h) ”.

Lemma 4.3.7. For some constant c it holds for all n, h ≥ 1 that ⊢c
cnh,1

∆ℓ, ∃4n~uΦn,h(~u), ∀h·n+2 ~w¬ΨCh
(~w) where Φn,h(~u) the n, h-iteration formula,

as defined in Definition 4.2.4.

Proof. First note, that there are constant height proofs of the following se-
quents.

• “f(~w(ℓ−1) ) = ~w(ℓ) ”,¬ΨCh
(~w)

• “f ℓ−1(0) = ~w(ℓ−1) ”,¬“f ℓ−1(0) = ~w(ℓ−1) ”

• “f ℓ(0) = ~w(ℓ) ”,¬“f ℓ(0) = ~w(ℓ) ”

• “(ℓ+ 1) = ℓ+ 1”

Therefore applications of an
∧

4-rule followed by an ∨-rule and an ∃4n-rule
gives us ∃4n~uΦn,h(~u),¬ΨCh

(~w),∆ℓ from where we get the desired derivation
by an ∀nh+2-rule.

Corollary 4.3.8. For some c we have that ⊢c
cnh,ch ∃4n~uΦn,h(~u), ∀h·n+2 ~w¬ΨCh

holds for all n, h ≥ 1.

Proof. Apply a multi-cut rule to the derivations of Lemma 4.3.7 to obtain
¬“f 0(0) = ~w(0) ”, “fh(0) = ~w(h) ”, ∃4n~uΦn,h(~u), ∀h·n ~w¬ΨCh

(~w). Two ∨-rules
and an ∃4n-rule finish the proof.
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4.4 Limits of the Method: Unrelativised Computation

Theorem 4.3.9. There are natural numbers c, C such that for all sufficiently
large n, h whenever c2 ·h2n < 2n and ⊢h′

c·nh,ch ∃nh+2 ~wΨCh
(~w) then h′ ≥ h−C.

Proof. Assume ⊢h′

w̃,c̃ ∃nh+2 ~wΨCh
. By Corollary 4.3.8 we have (for sufficiently

large n) a derivation ⊢c2
c1nh,c1h ∃4n~uΦn,h(~u), ∀hn ~w¬ΨCh

. Therefore, by Corol-

lary 3.4.7, we get ⊢h′+c2+1
max{w,c1nh},max{c̃,c1h} ∃4n~uΦn,h(~u). So, by Corollary 4.2.18,

we get h′ + c2 + 1 ≥ h, provided max{w̃, c1nh} · max{c̃, c1h} < 2n.

An immediate consequence of Theorem 4.3.9 is that a proof of ΨCh
re-

quires height h−O(1), for all h growing sub-exponentially with n.

4.4 Limits of the Method: Unrelativised Computation

Recalling the proof of Theorem 4.2.17, one notes that the only reason for
restricting the comprehension formulae was to avoid fixing too many values
of α and hence the partially constructed function f ; Lemma 4.2.16 was an
essential tool.

However, a trivial way of avoiding the need of fixing too many values
of α is considering α-free formulae. Despite the simple-mindedness of this
approach it will turn out useful to also add comprehension for these kind of
formulae to our propositional calculus. The resulting calculus, called AC⋆-
Tait, will be used in Subsection 6.4 as a target calculus for the propositional
translation of VNL(α). This embedding will, in Subsection 7.3, be used to
obtain matching upper and lower bounds for strength of that theory.

We will now formally introduce the calculus AC⋆-Tait and show that The-
orem 4.2.17 extends to this calculus as well. This result, while being useful
for obtaining precise strength measures, also shows the limits of our method:
while being very sensitive to nesting depth of oracle queries (up to a constant,
as we have seen in Theorem 4.3.9 and Lemma 4.3.3) it is blind to the cost of
unrelativised computation.

Definition 4.4.1 (AC⋆-Tait). The calculus AC⋆-Tait is defined to be AC0-
Tait (Definition 3.3.1) extended by comprehension (Definition 3.2.11) for
arbitrary α-free formulae.

So far, we have only defined (in Definition 4.2.7) how we apply partial pa-
rameter assignments to purely propositional formulae; however, it is obvious
how to apply a partial parameter assignment to a parameter free formula:
just leave it, as it is.

Definition 4.4.2. If A is a α-free and η a partial parameter assignment,
then Aη is defined to be A.
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4 THE SEQUENTIAL ITERATION PRINCIPLE

Lemma 4.4.3 (Atomic Substitution for AC⋆-Tait). If AC⋆-Tait proves Γ with
a w, c-slim proof of height h and if σ is an atomic substitution then AC⋆-Tait
also proves Γσ with a w, c-slim proof of height h.

Proof. Induction on h and following Lemma 3.3.6. Note that the property
of being α-free is closed under (atomic) substitutions.

Following Remark 3.3.7 we will, for AC⋆-Tait as well, tacitly assume eigen-
variables to be chosen sufficiently distinct where this is useful.

Inspection of the proof of Theorem 3.4.6 reveals that cut-elimination is
not affected by any rule that does not have a principal formula. In particu-
lar, as the only difference between AC0-Tait and AC⋆-Tait is the additional
comprehension rule, we get an admissible cut rule for AC⋆-Tait as well. We
will only need the following analogue of Corollary 3.4.7.

Proposition 4.4.4. Assume AC⋆-Tait proves Γ, A and Γ,¬A with w, c-slim
proofs of height h and h′, respectively. If A is in the Σ-closure of the purely
propositional formulae, then AC⋆-Tait proves Γ by a w, c-slim proof of height
h+ h′.

Theorem 4.4.5. Let k, n, w, c be natural numbers with c·w ≥ 2. Assume that
there is a w, c-slim AC⋆-proof of Γ of height h where Γ = ∆, ∃4n~rΦn,ℓ(~r), with
Φn,ℓ is the n, ℓ-iteration formula. Let η be a partial propositional assignment
and f : [2n] ⇀ [2n] be k-sequential. Assume |dom(f)| + cwh < 2n. If each
element of ∆ is either purely propositional or α-free, and ∆ηηf is closed,
α-free, and false then ℓ ≤ k + h.

Proof. We argue by induction on h and do case distinction according to the
last rule of the proof. Most cases are identical as in the proof of Theo-
rem 4.2.17. So we discuss only the changed ones.

Now, both quantifier rules could be the last rule. The case that the
principal formula is ∃4n~rΦn,ℓ(~r) remains unchanged. So we may assume that
the principal formula is an element of ∆.

Assume the last rule was an ∃k-rule

Γ, A(~℘)

Γ

where, by our assumption, ∃k~pA(~p) ∈ ∆, hence ∃k~pA(~p)ηηf false. By our
assumption on ∆ we may conclude that ∃k~pA(~p) is, in fact, α-free, since it is
not purely propositional. Therefore ∃k~pA(~p)ηηf = ∃k~pA(~p)η. By appropri-
ately extending η, we may assume A(~℘)η to be closed (and, of course, still
α-free). But then it has to be false, for otherwise ∃k~pA(~p)η could not be
false. Hence the induction hypothesis applies.
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4.4 Limits of the Method: Unrelativised Computation

Assume the last rule was an ∀k-rule

Γ, A(~a)

Γ

with ~a eigenvariables, without loss of generality not occurring in domain
of η. Again, ∀k~pA(~p)ηηf = ∀k~pA(~p)η ∈ ∆ and false. But then, for some
~℘ ∈ {T,F}, Aη(~℘) is false. We extend η accordingly and apply the induction
hypothesis.

The last remaining case is that of a comprehension rule

Γ,¬(p1 ↔ ϕ1), . . . ,¬(pj ↔ ϕj)

Γ

where the ϕi are α-free and the ~p are eigenvariables. Extend η to η′′ to make
the ~ϕη′′ closed, without loss of generality not affecting the eigenvariables ~p.
Now extend η′′ to η′ by setting η′(pi) to be the truth value of ϕiη

′′. With
this η′ we can apply the induction hypothesis.

Setting ∆ = ∅, η = ∅, f = ∅, and k = 0, we obtain the usual corollary.

Corollary 4.4.6. If AC⋆-Tait proves ∃4n~rΦn,ℓ(~r) by a w, c-slim proof of height
h for some c, w with cw ≥ 2, then h ≥ ℓ.
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5 Theories for Computational Complexity

Bounded Arithmetic has been introduced by Buss [10] in order to make meth-
ods of mathematical logic available to computational complexity. He defined
first-order theories Si

2 where the Σb
i -definable functions characterise precisely

the i’th level of the polynomial hierarchy. Moreover [40], the hierarchy of
theories Si

2 collapses, i.e., S2 =
⋃

i S
i
2 is finitely axiomatisable, if and only if

the polynomial-time hierarchy collapses provably in S2.
The theories Si

2 are best understood as fragments of Peano Arithmetic
(with some appropriate choice of function symbols in the language) with
restricted form of induction. Only induction on notation is available in Si

2

and induction is restricted to formulae is at most i alternations of bounded
quantifiers in front of a sharply bounded formula. Induction on notation
requires the induction step to go from A(⌊x/2⌋) to A(x); in other words, we
do induction on the number of bits of x.

As induction on notation is essentially induction up to log(x), it seems
natural to study systems by further restricting the range up to which induc-
tion is available to logj(x). It should be noted that, with the given choice of
language, exponentiation is not available as a total function. Therefore, it
does matter how far induction is available.

With the increase of computational power available, the problems that
could be tackled in practise grow bigger and bigger. This lead to an in-
creasing interest in smaller complexity classes, like L, NL, ACk, and NCk.
The latter are often considered as an appropriate model for efficiently par-
allelisable computation [12, 60, 13]. Most of them have good descriptive
characterisations [29, 43, 31, 32, 33] in a setting of finite model theory [42].
In this setting, one considers a finite universe [n], corresponding to the posi-
tions in the input and predicates P

a
⊆ [n] corresponding to the letters of the

alphabet.
So a natural way to formulate theories corresponding to these complexity

classes is to use a language corresponding to this setting. Therefore, a second-
order, or, more precisely, two-sorted, language is chosen. Besides a sort for
numbers, ranging over positions in the input, a second sort of finite sets, or
“bit strings”, is present. Quite a few of those two-sorted theories arose [14,
15, 16, 18, 19], mainly to carry out “low-level reverse mathematics” [46], i.e.,
to study the computational power of certain forms of mathematical reasoning
at a very low level.

One of the tools mathematical logic has to offer to analyse formal the-
ories is proof theory [25, 26, 56, 52]. A main theme in proof theory is to
determine for which order types a theory proves the principle of transfinite
induction [27]. The principle of transfinite induction is naturally formulated

63



5 THEORIES FOR COMPUTATIONAL COMPLEXITY

by referring to an uninterpreted relation symbol and therefore quite a few
proof-theoretic methods work best for theories having such an uninterpreted
predicate available. In a setting where the second sort of “strings” are the
main objects of the theory, they cannot simultaneously serve as big unknown
predicate. Therefore, one has to define and study relativised theories, build-
ing on relativised complexity classes, also studied in Section 2.

In this section we introduce the general setting for Bounded Arithmetic
in the two-sorted language and add appropriate relativisation. We also in-
troduce some concrete such theories that we will analyse later.

5.1 The Language of Two-Sorted Bounded Arithmetic

As mentioned in the introduction to this section, we follow the setting of
descriptive complexity [33] and our theories will have two sorts, numbers
and sets of numbers. We think of the latter as bit strings. This intuition
will be very obvious by the way our propositional translation is defined (in
Subsection 6.1). The finiteness of the universe in descriptive complexity is
reflected in our setting by the length function on sets. The length |X| of a
set is its length as seen as a string, i.e., one more than the largest element,
if X is not empty and the length of the empty set is zero.

Some words on the way our relativisation [4] works seem appropriate.
First of all, to properly increase the expressive power, the new predicate has
to be a property of the “biggest” sort, that is, the string sort. This, how-
ever, has some technical implications. Suddenly, strings occur as arguments
to something. So it is no longer only important which properties can be
expressed, say, by a ∆B

0 -formula (as one would expect for a second order
concept), but it also does matter, which string terms we have in our lan-
guage. Note that in an expression like α(X) we cannot just simply substitute
an arbitrary ϕ(·) for X.

A consequence of this loss of the substitution property is that we no
longer can transform ∀x < s∃X < t . . . into an ∃X′ < t · s∀x < s . . . as
usual. This lack of closure properties and also the need in Subsection 7.1 to
properly express the iteration principle (preferably as a strict ΣB

1 (α)-formula)
motivates the addition of one additional string function, the “row function”
·[·], which allows one to project to a certain “row” if we think of a string
coding a sequence of strings in a matrix-like fashion.

We nevertheless restrict the length function |X| to string variables. This
is necessary in order to allow a propositional translation (see Subsection 6.1);
as the first-order part is coded away—and |X| is of the number sort!—every
quantification over a string has to include a case distinction about its length.
Having only |X| in the language, this is not a problem, as there are only
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5.1 The Language of Two-Sorted Bounded Arithmetic

polynomially many possibilities. However, for expressions of the form |X[t]|
this would no longer be feasible. Consider a string of length at most n2. It
can code n strings of length at most n. This leaves nn many possible lengths
for the various substrings—an expression growing super-polynomially in n.

Even in our restricted setting we still will be able (in V 0(α)) to argue as if
we had |X[t]|. Using the ∆B

0 -comprehension axiom, we can obtain a variable
Y that is equal to X[t], so considering |Y| will serve the same purpose.

Definition 5.1.1 (The language L2(α)). The language L2(α) is a language
in the two sorts

• numbers and

• strings.

Terms, of the number sort, denoted by r, s, t, . . ., are built up form vari-
ables x, y, z, . . ., constants 0 and 1, and expressions |X| for X a string variable,
by the binary function symbols + and ·.

Terms T of the string sort are string variables X,Y,Z, . . ., negated string
variables X̄, Ȳ, Z̄, . . . or of the form rowTt where T is a term of the string
sort and t a term of the number sort.

Formulae, denoted by A,B, . . ., are built up form the atomic formulae

• = st, 6= st, < st, ≥ st for number terms s and t,

• Tt for T a string term and t a number term, and

• αT and ᾱT for T a string term

by conjunction ∧AB, disjunction ∨AB, bounded number quantification ∀<xtA
and ∃<xtA, bounded string quantification ∀<XtA and ∃<XtA, and unbounded
quantification ∀xA, ∃xA, ∀XA, and ∃XA.

Quantification ∀<xtA, ∃<xtA, ∀xA and ∃xA binds the (free) occurrences
of x in A, but not in t. Quantification ∀<XtA, ∃<XtA, ∀XA, and ∃XA
binds the (free) occurrences of X and X̄ in A. We consider alpha-equivalent
formulae as syntactically equivalent.

Remark 5.1.2. Again, syntactical equivalence is denoted by ≡ and the same
argument as in Remark 3.1.5 shows that the identification is compatible with
our understanding of syntax.

Remark 5.1.3. It should be noted that even though we have more compli-
cated string terms than just the variables, the length function | · | is restricted
to variables only. The reason is, that | · | implicitly provides induction and
we therefore want to have sets we induct on introduced by an explicit com-
prehension.
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Definition 5.1.4 (Bounded Formulae). An L2(α)-formula is called bounded,
if it does not use any unbounded quantification.

Notation 5.1.5. Even though our “official” notation is the Polish one, we
use A∧B, A∨B, s = t, s 6= t, s < t, s ≥ t, s·t, s+t, and T[t] as abbreviations
for ∧AB, ∨AB, = st, 6= st, < st, ≥ st, ·st, +st, and rowTt, respectively,
when there’s no danger of confusion. We also use parentheses to disambiguate
these abbreviations, or to facilitate reading, as in X(t), α(X). We also write
s > t and s ≤ t as abbreviations for t < s and t ≥ s, respectively.

We write ∀x < t.A, ∃x < t.A, ∀X < t.A, and ∃X < t.A as abbreviations
for ∀<xtA, ∃<xtA, ∀<XtA, and ∃<XtA, respectively.

We write t ∈ X and X ∈ α as a shorthands for X(t) and α(X), respectively.

Remark 5.1.6. Concerning the abbreviations introduced in Notation 5.1.5
and other places, it should be noted that in this thesis we will never code
our syntax in any formal theory. Therefore, it does not make much of a
difference how we define our language precisely. Nevertheless, in order to get
notions like “syntactic equality” well defined, we commit to one definition of
our syntax—that in Definition 5.1.1.

Remark 5.1.7. An easy induction shows that all terms of the string sort
are of form X[t1]...[tk] or X̄[t1]...[tk] for some k ≥ 0, where X a string variable
and t1, . . . , tk are terms of the number sort. We often write X[~t ] and X̄[~t ] for
X[t1]...[tk] and X̄[t1]...[tk].

Notation 5.1.8. We write ∀x ≤ t.A and ∃x ≤ t.A as abbreviations for
∀x < t+1.A and ∃x < t+1.A, respectively.

Notation 5.1.9. Addition associates to the left, that is t1 + t2 + . . .+ tn is
short for ((t1 + t2) + . . .) + tn.

Definition 5.1.10 (n). If n ∈ N is a natural number, by n we denote the
number term

1 + . . .+ 1
︸ ︷︷ ︸

n

if n 6= 0 and set 0 = 0.

Remark 5.1.11. Definition 5.1.10 is not the most economic definition of
a numeral with respect to term size; using that we have multiplication we
could use a binary coding as well.

However, we will never inspect the proof size of arithmetical proofs, only
their translations into propositional logic. Hence we don’t have to care about
the size of numeric terms.
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5.1 The Language of Two-Sorted Bounded Arithmetic

Moreover, the unary coding is more “ideologically correct”, as one is
supposed to think of numbers (as opposed to strings) as being coded in
unary.

Definition 5.1.12 (¬A). The negation ¬A of a formula A is defined by
induction on A in the obvious way. In other words

• ¬(s=t) ≡ s 6=t, ¬(s 6=t) ≡ s = t, ¬(<st) ≡ ≥st, ¬(≥st) ≡ <st,

• ¬X[~t ](t) ≡ X̄[~t ]t, ¬X̄[~t ](t) ≡ X[~t ](t), ¬(α(X)) ≡ ᾱX, ¬(ᾱX) ≡ α(X),

• ¬(A ∧B) ≡ (¬A) ∨ (¬B), ¬(A ∨B) ≡ (¬A) ∧ (¬B),

• ¬(∀<xtA) ≡ ∃<xt¬A, ¬(∃<xtA) ≡ ∀<xt¬A,

• ¬(∀<XtA) ≡ ∃<Xt¬A, ¬(∃<XtA) ≡ ∀<Xt¬A,

• ¬(∀xA) ≡ ∃x¬A, ¬(∃xA) ≡ ∀x¬A,

• ¬(∀XA) ≡ ∃X¬A, and ¬(∃XA) ≡ ∀X¬A.

Notation 5.1.13. We use A→ B as an abbreviation for (¬A)∨B. Moreover,
A↔ B is short for (A→ B) ∧ (B → A).

Remark 5.1.14. Note that the bounded quantifiers are syntactical entities
of their own. However, it will, e.g., be provable that (∀x < t.A) ↔ (∀x.(x <
t→ A)), as can be seen from Lemma 5.2.2.

Definition 5.1.15 (Ordered Pair 〈x; y〉). We define the ordered pair of num-
bers to be

〈x; y〉 ≡ (x+ y)(x+ y + 1) + 2 · y .

Remark 5.1.16. Our definition of the ordered pair deviates slightly from
the usual one which would be 2·〈x; y〉 ≡ (x+y)(x+y+1)+2·y. The reason is,
that we want 〈x; y〉 to be expressible as a term in our arithmetical language.
For our purpose it doesn’t suffice that the relation z = 〈x; y〉 definable by a
formula in our language.

Definition 5.1.17 (ΣB
i (α), ΠB

i (α)). The class ΣB
0 (α) = ΠB

0 (α) is the small-
est set of L2(α)-formulae that contains the atomic formulae and is closed
under conjunction, disjunction, and bounded number quantification ∀<xtA,
∃<xtA.

The class ΣB
i+1(α) is the smallest set of formulae that contains the ΠB

i (α)
formulae and is closed under existential bounded string quantification ∃X ≤
tA.
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The class ΠB
i+1(α) is the smallest set of formulae that contains the ΣB

i (α)
formulae and is closed under universal bounded string quantification ∀X ≤
tA.

Remark 5.1.18. The reason to use ∃X ≤ tA in Definition 5.1.17, rather than
∃X < tA which might be more suggested by the syntax is, that we want, in
the buildup of ΣB

i (α)-formula, always to be able to go from a formula A
independent of X to ∀X ≤ tA and ∃X ≤ tA. This intuitive property would
not hold with strict inequalities.

Remark 5.1.19. Immediately by induction on formulae we note that the
negation of a ΣB

i (α)-formula is a ΠB
i (α)-formula, and vice versa.

Definition 5.1.20 (ΠB
∞(α)). We set

ΠB
∞(α) =

⋃

n∈N

ΠB
n (α)

to be the set of all formulae that contain bounded quantifiers only.

Remark 5.1.21. Since ΠB
n (α) ⊂ ΣB

n+1(α) the set ΠB
∞(α) can also be written

as

ΠB
∞(α) =

⋃

n∈N

ΣB
n (α) .

Definition 5.1.22 (dp(A)). If A is an ΠB
∞-formula, then we define its depth

dp(A) by induction on A as follows.

• dp(s = t) = dp(s 6= t) = dp(s < t) = dp(s ≥ t) = 1

• dp(T(t)) = 1

• dp(α(T)) = 1

• dp(A ∧B) = dp(A ∨B) = 1 + max{dp(A), dp(B)}

• dp(∀<xtA) = dp(∃<xtA) = dp(∀<XtA) = dp(∃<XtA) = 1 + dp(A)

Definition 5.1.23 (Substitution A[~t, ~Y/~x, ~X]). If A is a formula, ~x pair-

wise distinct number variables, ~X pairwise distinct string variables, ~t number
terms and ~Y number variables, we denote by A[~t, ~Y/~x, ~X] the simultaneous,

capture-free substitution of ~t for ~x and ~Y for ~X.
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Remark 5.1.24. By requiring that the substitution A[~t, ~Y/~x, ~X] be capture
free, Definition 5.1.23 is only well-defined up to alpha-equivalence. For-
tunately, we identify alpha-equal formulae; see Definition 5.1.1 and Re-
mark 5.1.2.

Remark 5.1.25. In Definition 5.1.23, we only allowed substitution of string
variables for string variables and not the more conventional substitution of
formulae with distinguished free number variables for string variables. The
reason for this is length function |·|. Number terms can contain expressions of
the form |X|, but the lengths of arbitrary string terms, let alone formulae, is
outside the scope of our language, compare Definition 5.1.1 and Remark 5.1.3.
However, for formulae not containing |X| or α(X[t1]...[tk ]) we will define (in
Definition 5.1.27) and use the more conventional form of substitution for
string variables

Notation 5.1.26. When displaying variables of a formula as in A(~x, ~X) this
should signify that these variables, among others, may occur in A. This
notation does not imply that these variables actually do occur free and the
list ~x, ~X does not necessarily exhaust all the free variables of A. The purpose
of such a display of variables is to distinguish certain variables so that later
A(~t, ~Y) can be used as a shorthand for the substitution A[~t, ~Y/~x, ~X].

Definition 5.1.27 (Substitution A[ϕ(x)/X]). Let A(X) be a formula that
neither uses the length of X, i.e., does not contain |X| as a subexpression, nor
queries about X, i.e., does not contain an atom of the form α(X[t1]...[tk]). Let
ϕ(x) be a formula with a distinguished number variable x. Then A[ϕ(x)/X]
denotes A with all expressions X[t1]...[tk](s) replaced by ϕ(〈t1; 〈. . .; 〈tk; s〉〉〉)
and all expressions X̄[t1]...[tk ](s) replaced by ¬ϕ(〈t1; 〈. . .; 〈tk; s〉〉〉).

We adopt Notation 5.1.26 to expressions A(ϕ) accordingly.

Definition 5.1.28 (∆B
i (α)-formulae of a theory T ). If T is a theory in the

language L2(α), then a ∆B
i -formula of T is a pair 〈ϕ;ψ〉 such that ϕ ∈ ΣB

i

and ψ ∈ ΠB
i and T proves ϕ↔ ψ.

Remark 5.1.29 (∆B
i (α)). Later, we will also refer to just ∆B

i (α)-formulae
without explicitly mentioning a theory. Unless specified otherwise, this will
always refer to ∆B

i (α)-formulae of V 0(α), as defined in Definition 5.2.14. Note
that Definition 5.2.14 neither directly nor indirectly refers to the notion of a
∆B

i (α)-formula.
We write ∆B

i (α) to the denote the set of ∆B
i (α)-formulae (of V 0(α)).

Substitution (in the sense of Definition 5.1.23) is extended to ∆B
i (α)-

formulae by always choosing the variant of the two equivalent formulae that
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5 THEORIES FOR COMPUTATIONAL COMPLEXITY

yields the least increase in the logical complexity. This form of substitution
is the main benefit of considering ∆B

i (α)-formulae and will be made precise
in Lemma 5.1.32.

Definition 5.1.30 (Substitution A[ϕ(x)/X] for ϕ(x) a ∆B
i (α)-formula). Let

A(X) be a formula that neither uses the length of X, i.e., does not contain
|X| as a subexpression, nor queries about X, i.e., does not contain an atom
of the form α(X[t1]...[tk ]). Let ϕ(x) = 〈ψ(x);ψ′(x)〉 be a ∆B

i (α)-formula of
some theory T in the language L2(α) with a distinguished number variable
x. Then A[ϕ(x)/X] denotes A with all expressions X[t1]...[tk](s) replaced by
ψ(〈t1; 〈. . .; 〈tk; s〉〉〉) or ψ′(〈t1; 〈. . .; 〈tk; s〉〉〉), and all expressions X̄[t1]...[tk](s)
replaced by ¬ψ′(〈t1; 〈. . .; 〈tk; s〉〉〉) or ¬ψ(〈t1; 〈. . .; 〈tk; s〉〉〉).

Here, the first option is chosen in positions where the innermost string-
quantifier they are in the scope of is existential, or in positions that are not
under the scope of any string quantification. Otherwise, the second choice is
taken.

We adopt Notation 5.1.26 accordingly to expressions A(ϕ), for ϕ a ∆B
i (α)-

formula of some theory (understood from the context).

Notation 5.1.31 (∆B
i ). We use expression ∆B

i -formula (of some theory T ),
to denote ∆B

i (α)-formulae not containing α.

The main point about ∆B
1 -formula is that, in a context where at least

one quantifier is present, they can be used as if they where ΠB
0 . This is made

formal in the next lemma.

Lemma 5.1.32. If A(X) is a ΣB
i+1(α)-formula for some i ≥ 0 and ϕ(x) is a

∆B
1 (α) such that A(ϕ) is defined, then A(ϕ) is still ΣB

i+1(α).

Proof. First, a simple induction on B shows that, if B(X) is ΠB
0 (α) then B(ϕ)

can be both, ΣB
1 (α) and ΠB

1 (α). Then, induction on i yields the claim.

5.2 The Basic Theory V 0(α)

Definition 5.2.1 (Two-Sorted predicate Logic). Two-sorted predicate logic
is classical first-order logic, restricted to the language L2(α), this is, requiring
that the sorts be respected. We assume a Tait-style formalisation where in
the description of the rule we omit side formulae; we add the rules for the
bounded quantifiers as following.

a ≥ t, A[a/x]

∀x < t.A

s < t ∧A[s/x]

∃x < t.A

|Y| ≥ t, A[Y/X]

∀X < t.A

|Y| < t ∧ A[Y/X]

∃X < t.A
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5.2 The Basic Theory V 0(α)

Here in the universal rules we assume the eigenvariable condition for a and
Y; for the existential rules s and Y may be arbitrary.

Lemma 5.2.2. The following are consequences of two-sorted predicate logic
and can be proved in a cut-free way.

• (∀x < t.A) ↔ (∀x(x < t→ A))

• (∃x < t.A) ↔ (∃x(x < t ∧ A))

• (∀X < t.A) ↔ (∀X(|X| < t→ A))

• (∃X < t.A) ↔ (∃X(|X| < t ∧ A))

Proof. For example the first equivalence is proved as follows.

a < t ∧ ¬A[a/x], a ≥ t, A[a/x]

∃x < t.¬A, a ≥ t, A[a/x]

∃x < t.¬A, a ≥ t ∨A[a/x]

∃x < t.¬A, ∀x(x ≥ t ∨ A)

and
a < t ∧ ¬A[a/x], a ≥ t, A[a/x]

∃x(x < t ∧ ¬A), a ≥ t, A[a/x]

∃x(x < t ∧ ¬A), ∀x < t.A

The proofs for the remaining three equivalences are very similar.

Definition 5.2.3 (Basic Axioms). The basic axioms of two-sorted arithmeti-
cal theories are all substitution instances of the following formulae

• x+ 1 6= 0 and x+ 1 = y + 1 → x = y and x = 0 ∨ ∃y < x.x = y + 1

• x+ 0 = x and x+ (y + 1) = (x+ y) + 1 and 0 + 1 = 1

• x · 0 = 0 and x · (y + 1) = x · y + x

• x ≥ 0 and x+ y ≥ x

• x < y ∨ y < x ∨ x = y

• y < x ∨ z < y ∨ z ≥ x

• x ≥ y ∨ y ≥ x

• y < x ∨ x < y + 1 and x ≥ y + 1 ∨ y ≥ x

• X(y) → y < |X| and y + 1 = |X| → X(y)

and the equality axioms as follows.

• r = r and s = t→ t = s and r = s→ s = t→ r = t
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• t = t′ → r[t/x] = r[t′/x]

• t = t′ → X(t) → X(t′)

Remark 5.2.4. The basic axioms are the basic axioms B1–B14 and L1–L2
of Cook’s formulation [14] of V 0. However, some abbreviations have been
expanded to show the actual symbols < and ≥ of our official language.

Proposition 5.2.5. The basic axioms imply x < y + 1 ↔ x ≤ y.

Proof. Both conjuncts of the conjunctive normal form of this statement are
basic axioms.

Proposition 5.2.6. The basic axioms imply X(x) → |X| > x.

Proof. This is one of the basic axioms.

Notation 5.2.7. We write X[~s ] = Y[~t ] as abbreviation for

(∀i < |X|.X[~s ](i) ↔ Y[~t ](i)) ∧ (∀i < |Y|.X[~s ](i) ↔ Y[~t ](i))

and use similar abbreviations for strings ending in a negated variable X̄.

Proposition 5.2.8. Equality of strings is symmetric, that is, T = T′ → T =
T′ is a consequence of the equality axioms.

Proof. Expanding the abbreviation T = T′ and using the characterisation of
Lemma 5.2.2 of the bounded quantifiers, the claim follows purely logically.

Proposition 5.2.9. If X = Y then |X| = |Y|.

Proof. Assume X = Y and, for the sake of contradiction, |X| 6= |Y|. Without
loss of generality |X| < |Y|. In particular |Y| 6= 0, so there is a y such that
y + 1 = |Y|. But then Y(y) and therefore, since y ≤ |Y|, we have X(y)
which, in turn, implies y < |X|. But then |Y| = y + 1 ≤ |X|, contradicting
|Y| > |X|.

Equality of strings can be shown extensionally.

Proposition 5.2.10.

(∀i.(T(i) ↔ T′(i))) → T = T

is a purely logical consequence.
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5.2 The Basic Theory V 0(α)

Proof. We use the characterisation of Lemma 5.2.2 of bounded quantifiers
and note that ∀iϕ implies ∀i < t.ϕ. Hence the claim is immediate by unfold-
ing the abbreviations.

The converse is immediate for string variables.

Proposition 5.2.11. From the basic axioms the following equality axiom

X = Y → X(i) → Y(i)

is derivable.

Proof. Argue informally in the theory of the basic axioms.
Assume X = Y and X(i). From X(i) we get i < |X|, hence we can

eliminate the bounded quantifier and get Y(i).

There is one equality axiom for strings missing, which we have to assert
in the respective theories.

Definition 5.2.12 (String Extensionality). By “string extensionality” we
mean the following axiom.

T = T′ → α(T) → α(T′)

We have not formulated an equality axiom for the row function. The
reason is, that the row function has an explicit definition and so the equality
axiom is derivable anyway.

Note, however, that the explicit definition does not render the row func-
tion useless. The presence of the row function provides our theories with more
terms of the string sort, and therefore, in particular, with more arguments
we can give to the parameter α.

Definition 5.2.13 (Row Axiom). The row axiom is the axiom

T[t](s) ↔ T(〈t; s〉)

Definition 5.2.14 (V 0(α)). The system V 0(α) is defined to be the basic
axioms, the row axiom and string extensionality with two-sorted predicate
logic in the language L2(α), and the ΣB

0 (α)-comprehension axioms

∃Z < y + 1∀i < y(Z(i) ↔ ϕ(i, ~x, ~X))

where ϕ(i, ~x, ~X) is any ΣB
0 (α)-formula and Z a fresh variable (i.e., not con-

tained in ϕ).
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The next few lemmata are a step towards the proof of the induction princi-
ple in Lemma 5.2.18. The presentation follows closely Cook’s manuscript [14].

Lemma 5.2.15. V 0(α) proves the following minimisation principle.

X(y) → ∃x ≤ y(X(x) ∧ ∀z < x¬X(z))

Proof. Argue informally in V 0(α).
We use ΣB

0 -comprehension to obtain a Z with |Z| < y + 1 and

∀i < y(Z(i) ↔ ∀z ≤ i¬X(z))

Let x = |Z|. We want to show X(x) and ∀z < x¬X(z) which shows that x is
the desired witness.

First consider the case x = 0. Then the second claim holds true vacuously.
To establish X(0) note that ¬X(0) would imply Z(0) and therefore |Z| > 0.

If x 6= 0 then x = x′ + 1 for some x′. Hence we obtain Z(x′) and ¬Z(x)
from the basic axioms on the length of a string. This leaves us with the
situation

∀z ≤ x′¬X(z) and ∃z ≤ x′ + 1X(z)

Using that the basic axioms enforce z ≤ x′ + 1 → z ≤ x′ ∨ z = x′ + 1 the
claim follows by logical reasoning.

Remark 5.2.16. In the proof of Lemma 5.2.15 it was essential that ΣB
0 is

closed under bounded number quantification.

Lemma 5.2.17. V 0(α) proves the following set-induction axiom.

[X(0) ∧ ∀x < z(X(x) → X(x+ 1))] → X(z)

Proof. Argue informally in V 0(α).
Assume X(0)∧∀x < z(X(x) → X(x+1)). We have to show X(z). By ΣB

0 -
comprehension we obtain a Y with |Y| ≤ z + 1 and ∀i ≤ z(Y(i) ↔ ¬X(i)).

Suppose ¬X(z) to show a contradiction. This implies Y(z) and by set-
minimisation (Lemma 5.2.15) we obtain an x ≤ z with Y(x)∧ ∀i < x¬Y(i).
If x = 0 then Y(0) contradicts the assumption X(0). If x 6= 0 then x = y+ 1
for some y and we ¬Y(y) ∧ Y(y + 1) which contradicts ∀x < z(X(x) →
X(x+ 1)).

Lemma 5.2.18. V 0(α) proves the following bounded ΣB
0 (α)-induction axiom.

[ϕ(0) ∧ ∀x < z(ϕ(x) → ϕ(x+ 1))] → ϕ(z)

where ϕ is a ΣB
0 (α)-formula, possibly with parameters of both sorts.
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Proof. Argue informally V 0(α).
By ΣB

i (α)-comprehension we obtain an X with |X| ≤ z + 1 and ∀i ≤
z(X(i) ↔ ϕ(i)). Assume ϕ(0) ∧ ∀x < z(ϕ(x) → ϕ(x + 1))]. Then, by the
properties of X we obtain X(0)∧∀x < z(X(x) → X(x+1))], and X-induction
(Lemma 5.2.17) gives us X(z), hence ϕ(z).

Corollary 5.2.19. V 0(α) proves the following ΣB
0 (α)-Induction axiom.

[ϕ(0) ∧ ∀x(ϕ(x) → ϕ(x+ 1))] → ∀zϕ(z)

where ϕ is a ΣB
0 (α)-formula, possibly with parameters of both sorts.

Proof. Follows from Lemma 5.2.18 by first order logic.

Having now enough induction available, we prove some basic arithmetical
facts. They will, in particular, provided the needed monotonicity properties
of our coding, in particular of 〈x; y〉.

Proposition 5.2.20. As a theorem of V 0(α), it is the case that x + y ≥ x
and x+ y ≥ y.

Proof. Argue informally in V 0(α).
x + y ≥ x is one of the basic axioms. We show x + y ≥ y by induction

on y. If y = 0, then x+ 0 ≥ 0 is one of the basic axioms. If y = y′ + 1 then
x + y = x + (y′ + 1) = (x + y′) + 1. By induction hypothesis x + y′ ≥ y′,
and so by Proposition 5.2.5, we have (x + y′) + 1 > y′. We have to show
(x+y′)+1 ≥ y′+1; assuming the contrary we get (x+y′)+1 < y′+1, which
by Proposition 5.2.5 again, is the same as saying (x + y′) + 1 ≤ y′. But his
contradicts (x+ y′) + 1 > y′.

Proposition 5.2.21. V 0(α) proves that 〈x; y〉 ≥ y.

Proof. Arguing informally in V 0(α) we note that 〈x; y〉 = · · ·+2 · y ≥ 2 · y =
y + y ≥ y, where for the first inequality we used Proposition 5.2.20.

We now show that all the remaining extensionality properties hold as a
theorem of V 0(α).

Proposition 5.2.22. As a theorem of V 0(α) the equality axiom

T = T′ → T(i) → T′(i)

holds.
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Proof. Argue informally in V 0(α).
Assume T = T′ and T(i). By Remark 5.1.7 we know that T is of the

form T ≡ X[~t]. By the row axiom from T(i) we therefore get X(〈. . .; 〈. . .; i〉〉)
and therefore 〈. . .; 〈. . .; i〉〉 < |X|. Iterated application of Proposition 5.2.21
yields i ≤ 〈. . .; 〈. . .; i〉〉 < |X|. So we can eliminate the bounded quantifier
and get T′(i).

Proposition 5.2.23. The following is a theorem of V 0(α).

T = T′ → t = t′ → T[t] = T′[t
′]

Proof. Argue informally in V 0(α).
Assume T = T′ and t = t′. We want to show T[t] = T[t′]. By Propo-

sition 5.2.10 it suffices to show ∀i(T[t](i) ↔ T′[t
′](i)). By the row axiom, it

suffices to show ∀i(T(〈t; i〉) ↔ T′(〈t′; i〉). So let i be given. From t = t′ and
the equality axioms we obtain 〈t; i〉 = 〈t′; i〉. Since we have T = T′, the claim
T(〈t; i〉) ↔ T(〈t′; i〉) follows from Proposition 5.2.22.

Proposition 5.2.24. The basic axioms together with the row axioms imply

X = Y → t(X) = t(Y)

for any L2(α)-term t.

Proof. Induction on t. The only non-trivial case is when t(X) ≡ |X| and
t(Y) ≡ |Y|. Here Proposition 5.2.9 yields the claim.

Lemma 5.2.25. If ϕ(X) is a L2(α)-formula, then

X = Y → (ϕ(X) ↔ ϕ(Y))

is a theorem of V 0(α).

Proof. Induction on ϕ. For the “numeric” atomic formulae, that is, if ϕ is of
one of the forms s = t, s 6= t, s < t or s ≥ t, then Proposition 5.2.24 provides
the needed equalities.

For ϕ(X) ≡ X[~s](t) we first have t[Y/X] = t and ~s[Y/X] = ~s again by
Proposition 5.2.24. Iterated application of Proposition 5.2.23 yields X[~s] =
(X[~s])[Y/X], hence Proposition 5.2.22 yields the claim X[~s](t) ↔ (X[~s](t))[Y/X].

The case ϕ(X) ≡ X̄[~s](t) is handled similarly. To show X = Y → α(T) ↔
α(T[Y/X]) we again first obtain T = T[Y/X] from X = Y; then we can use
the string extensionality axiom.

If ϕ is not an atomic formula, the claim follows immediately from the
induction hypotheses by the fact that logical equivalence is a congruence
relation with respect to logical connectives.
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5.3 The Theories VL(α) and VNL(α)

Motivated by Proposition 2.5.14, we know define a theory VNL(α) for NLα

by axiomatising that the problem of the reachability relation has a solution.
Using the pairing of natural numbers, a set variable X can be considered a
directed graph on [a] by defining the directed edge from i to j to be present
if and only if X〈i; j〉.

With this reading in mind, it is easy to define a ∆B
0 -formula asserting

that Y〈t; i〉 holds if and only if there is a path of length at most t from 0 to
i.

Definition 5.3.1 (δconn(a,X,Y)). The connectivity formula δconn(a,X,Y) is
defined to be

Y〈0; 0〉 ∧ ∀x < a(x 6= 0 → ¬Y〈0; x〉)∧
∀z < a∀x < a [Y〈z+1; x〉 ↔ (Y〈z; x〉 ∨ ∃y < a(Y〈z; y〉 ∧ X〈y; x〉))] .

Definition 5.3.2 (VNL(α)). The theory VNL(α) is defined to be V 0(α) plus
the axiom

∃Y < 〈a; a〉δconn(a,X,Y)

For Lα the corresponding complete problem is s-t-connectivity for graphs
with out-degree at most one. This can be expressed by saying that, if j and
j′ can both be reached by an edge from i, then j = j′.

Definition 5.3.3 (VL(α)). The theory VL(α) is defined to be V 0(α) plus the
axiom

[∀i, j, j′ < a(X〈i; j〉 → X〈i; j′〉 → j = j′)] → ∃Y < 〈a; a〉 δconn(a,X,Y)

Immediately from the definition we note that VL(α) ⊆ VNL(α).

5.4 The Logarithm Function

As discussed in the introduction, one natural way to obtain further theories
of Bounded Arithmetic that are of interest in the literature is to restrict the
range of induction to logj(x). It order to formally define this, we need a
notion of logarithm in the language. An obvious, and legitimate, way to
achieve this, is to add a new function symbol. However, this is not necessary,
as the relation “n = 2m” is already AC0-definable.

Mainly following a standard text book [33], we show that the bit relation
can be defined, that is, the relation saying that the i’th bit of the repre-
sentation of j in binary is one. Another presentation of an exponentiation
function can be found in the new text book by Cook and Nguyen [18].
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As an application, we can convert back and forth between numbers and
their string representation. We will also define a logarithm relation saying
i = |j|; this will allow us to define in Subsection 5.5 systems V i/j(α) with
restricted induction on more complex formulae than just the ΣB

0 (α).
This subsection is quite technical and essentially known in the literature.

It can be safely skipped assuming that we had a relation symbol EXP(i, j)
expressing 2i = j with the defining equations added as axioms.

Moreover, adding additional true α-free first-oder axioms will not change
any of the strength measures considered. In fact, Proposition 6.4.1 will show
that heights of proofs translated into propositional logic—and therefore also
the strength measure we will build on this—are insensitive to the addition
of true purely first-order axioms. Therefore, we will be a bit sketchy in this
section about properties provable in V 0(α). All the properties needed are
of the right shape, i.e., true and purely first-order. Therefore, they could as
well be added as additional axioms instead of showing that they are already
theorems of V 0(α). This would not change the sequel of this work in any
way.

Definition 5.4.1 (DIVIDES(x, y)). We define the abbreviation

DIVIDES(x, y) ≡ ∃z ≤ y(z · x = y)

saying that x divides y.

Proposition 5.4.2. DIVIDES(x, y) ∈ ΠB
0

Proof. By inspection of the definition.

Proposition 5.4.3. N |= DIVIDES(n,m) if and only if n is a divisor of m.

Proof. By the definition of the divisor relation in N.

Proposition 5.4.4. For n ∈ N the following is a consequence of the basic
axioms.

x · n = x+ . . .+ x
︸ ︷︷ ︸

n

Proof. (Meta)induction on n.

Remark 5.4.5. Note that in Proposition 5.4.4 it was essential that the
numeral was multiplied “from the right”.

Lemma 5.4.6. If n ∈ N then the following is a consequence of the basic
axioms.

DIVIDES(n, x) ↔ ∃z ≤ x(z + . . .+ z
︸ ︷︷ ︸

n

= x)
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Proof. Immediately from the Definition 5.4.1 and Proposition 5.4.4.

Definition 5.4.7 (POW2(x)). We define the abbreviation

POW2(x) ≡ ∀y < x.DIVIDES(y, x) ∧ y ≥ 2 → DIVIDES(2, y)

saying that x is a power of 2.

Proposition 5.4.8. POW2(x) ∈ ΠB
0

Proof. By inspection of Definition 5.4.7 and Propositions 5.4.2.

Proposition 5.4.9. N |= POW2(n) if and only if n is a power of two.

Proof. Immediately from Definition 5.4.7 and Propositions 5.4.3 we see that
every power of two n has the property POW2(n).

If, on the other hand, n is not a power of two, than there is some prime
p > 2, that divides n. However 2 is then not a divisor of p.

Notation 5.4.10. If n =
∑

i 2
i · ai with ai ∈ {0, 1} then it is well known

that the ai are uniquely determined and we denote ai by n[i] and call it the
“i’th bit of the binary representation of n”.

For example 13[0] = 1, 13[1] = 0, 13[2] = 1, and 13[3] = 1.

Definition 5.4.11 (BIT′(x, y)). We define the abbreviation

BIT′(x, y) ≡ POW2(y) ∧ (∃u < x)(∃v < y)(x = 2 · u · y + y + v)

expressing that, for some i, we have y = 2i and the i’th bit of the binary
representation of x is 1.

Proposition 5.4.12. BIT′(x, y) ∈ ΠB
0

Proof. By Inspection of Definition 5.4.11 and Propositions 5.4.8.

Proposition 5.4.13. N |= BIT′(n, k) if and only if k is of the form k = 2i

and n[i] = 1.

Proof. By Proposition 5.4.9 we know that k is a power of two, that is k = 2i,
for some i ∈ N. Moreover, n = 2uk+ k + v for some u and v < k. Therefore
n = u · 2i+1 + 2i + v with v < 2i, hence the i’th bit is set.

On the other hand, if k = 2i and the i’th bit n is set, we can chose
u = ⌊n/2i+1⌋ and v = n mod 2i+1.
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x

i
?

j

?

u = 2i v = 2j

c

ℓ
6

0 ≤ ℓ < i− jk = 2ℓ

Figure 1: The specification of BITCOPY(x, u, v, c).

Definition 5.4.14 (BITCOPY(x, u, v, c)). We define the abbreviation

BITCOPY(x, u, v, c) ≡
(∀k ≤ c)(POW2(k) → v · k < u ∧ (BIT′(c, k) ↔ BIT′(x, 2 · v · k)))

expressing that for u = 2i and v = 2j , then the binary representation of c
consists of bits i . . . (j + 1) of x.

The specification of BITCOPY(x, u, v, c) is illustrated in Figure 1.

Proposition 5.4.15. BITCOPY(x, u, v, c) ∈ ΠB
0

Proof. Immediately by inspection of Definition 5.4.14, using Proposi-
tions 5.4.8 and 5.4.12.

Proposition 5.4.16. Suppose that i ≥ j are natural numbers. Then N |=
BITCOPY(n, 2i, 2j, m) if and only if (∀0≤ℓ<i− j)(m[ℓ] = n[ℓ + j + 1]) and
(∀ℓ≥i− j)(m[ℓ] = 0).

Proof. Using Propositions 5.4.9 and 5.4.11 for the soundness of POW2(·) and
BIT′(·, ·) we can rewrite N |= BITCOPY(n, 2i, 2j, m) equivalently as

∀ℓ(2ℓ ≤ m→ 2j · 2ℓ < 2i ∧ (m[ℓ] ↔ n[1 + j + ℓ]))

Using that 2j · 2ℓ < 2i is equivalent to ℓ < i− j, and 2ℓ ≤ m is equivalent to
(∃ℓ′ ≥ ℓ)(m[ℓ′] = 1). This yields the claim.

Remark 5.4.17. The intuitive meaning of EXPCOMP(a, b) is that, if i and
j are consecutive set bits of a, then bits i . . . (j + 1) of b are the binary
representation of i. In other words, EXPCOMP(a, b) says that a and b code
a computation of 2i by “repeated squaring”, that is, by using

22·i = (2i)2 and 22·i+1 = 2 · (2i)2 .

Since we must fit in the binary representation of i into i− j many bits, this
leaves us with the base cases 3, 4, and 5 for i.

Figure 2 shows an example of numbers a and b, represented in binary, for
which EXPCOMP(a, b) holds. Figure 3 shows the base cases.
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5.4 The Logarithm Function

13 12 11 10 9 8 7 6 5 4 3 2 1 0
a 1 0 0 0 0 0 0 1 0 0 1 0 1 0
b 0 0 0 1 1 0 1 1 1 0 1 1 0 0

Figure 2: The computation of 213. Note that the binary representation of 13
is 1101.

3 2 1 0 4 3 2 1 0 5 4 3 2 1 0
1 0 1 1 0 0 1 1 0 0 0 1
1 1 1 0 0 0 1 0 1

Figure 3: The base cases for EXPCOMP(·, ·).

Definition 5.4.18 (CONSEC(a, u, v)). We define the abbreviation

CONSEC(a, u, v) ≡
u > v ∧ BIT′(a, u) ∧ BIT′(a, v) ∧ (∀k < u)(k > v → ¬BIT′(a, k))

expressing that u and v name consecutive bits in a.

Proposition 5.4.19. CONSEC(x, u, v)c ∈ ΠB
0

Proof. By inspection of Definition 5.4.18, using Proposition 5.4.12.

Proposition 5.4.20. N |= CONSEC(n, 2i, 2j) if and only if i and j are
consecutive bits of n, that is, if i > j and n[i] = 1 and n[j] = 1 and (∀i <
ℓ < j)(n[ℓ] = 0).

Proof. This follows immediately from Proposition 5.4.13

Definition 5.4.21 (EXPCOMP(a, b)). We define the abbreviation

EXPCOMP(a, b) ≡
EXPCOMPinit(a, b)∧
(∀u ≤ a)(∀k ≤ a)(∀v ≤ a)((CONSEC(a, u, k) ∧ CONSEC(a, k, v)) →

((∃i ≤ b)(∃j < b)(BITCOPY(b, u, k, i) ∧ BITCOPY(b, k, v, j)∧
((i = 2 · j) ∧ (u = k · k)) ∨ ((i = 2 · j + 1) ∧ (u = 2 · k · k)))))

where we used the abbreviation

EXPCOMPinit(a, b) ≡
(BIT′(a, 8) ∧ ¬BIT′(a, 4) ∧ BIT′(a, 2)∧

BIT′(b, 8) ∧ BIT′(b, 4))∨
(BIT′(a, 16) ∧ ¬BIT′(a, 8) ∧ ¬BIT′(a, 4) ∧ BIT′(a, 2)∧

BIT′(b, 16) ∧ ¬BIT′(b, 8) ∧ ¬BIT′(b, 4))∨
(BIT′(a, 32) ∧ ¬BIT′(a, 16) ∧ ¬BIT′(a, 8) ∧ ¬BIT′(a, 4) ∧ BIT′(a, 2)∧

¬BIT′(b, 32) ∧ BIT′(b, 16) ∧ ¬BIT′(b, 8) ∧ BIT′(b, 4))
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Proposition 5.4.22. EXPCOMP(a, b) ∈ ΠB
0

Proof. Immediately by inspection of Definition 5.4.21, using Proposi-
tions 5.4.12 and 5.4.15.

Lemma 5.4.23. If N |= EXPCOMP(n,m) and i and j are consecutive bits in

n, then i consists of the bits i . . . (j+1) of m, that is, i =
∑i−(j+1)

ℓ=0 m[ℓ+ j + 1]·
2ℓ.

Proof. Assume N |= EXPCOMP(n,m) and use Propositions 5.4.20, 5.4.16,
and 5.4.13.

We argue by induction on i. If i and j are the smallest consecutive bits in
n the claim follows by inspection of the base cases in EXPCOMPinit(n,m),
compare Figure 3.

So let i and j be consecutive bits in n, with j not being the smallest.
Then there is a j′ such that j, j′ are consecutive bits in n. By induction

hypothesis j =
∑j−(j′+1)

ℓ=0 m[ℓ + j′ + 1] · 2ℓ. From N |= EXPCOMP(n,m) we

therefore get for ı̃ =
∑i−(j+1)

ℓ=0 m[ℓ + j + 1] · 2ℓ that ı̃ = 2j ∧ 2i = (2j)2 or
ı̃ = 2j + 1 ∧ 2i = 2(2j)2. In either case ı̃ = i follows.

Lemma 5.4.24. If n ≥ 3 then there are a, b ≤ 2·2n with N |= EXPCOMP(a, b)
such that n is the highest bit of a and there is a next bit i in a such that
n =

∑n−(i+1)
ℓ=0 b[ℓ] · 2ℓ.

Proof. Let n ≥ 3. We have to show that there are a, b and i such that
N |= EXPCOMP(a, b) and n is the highest and i the second highest bit in a

and n =
∑n−(i+1)

ℓ=0 b[ℓ] · 2ℓ.
We argue by induction on n and tacitly use Propositions 5.4.20, 5.4.16,

and 5.4.13.
The cases n = 3 and n = 4, and n = 5 are witnessed by a = 10, b =

12, i = 1 and a = 18, b = 16, i = 1 and a = 34, b = 18, i = 1, respectively.
So let n ≥ 6. Then there is an n′ ≥ 3 such that n = 2n′ or n = 2n′+1. By

induction hypothesis there are a′, b′, i′ with a′[n′] and N |= EXPCOMP(a′, b′)

and n′, i′ the two highest bits of a and n′ =
∑n′−(i′+1)

ℓ=0 b′[ℓ] · 2ℓ. Then

a = 2n + a′ and b = n · 2n′

are as desired.

Definition 5.4.25. We define the abbreviation

EXP(x, y) ≡
(x = 0 ∧ y = 1) ∨ (x = 1 ∧ y = 2) ∨ (x = 2 ∧ y = 4)∨
(x ≥ 3 ∧ (∃a ≤ 2 · y)(∃b ≤ 2 · y)(∃u ≤ y)

(EXPCOMP(a, b) ∧ CONSEC(a, y, u) ∧ BITCOPY(b, y, u, x)))
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Proposition 5.4.26. EXP(a, b) ∈ ΠB
0

Proof. Immediately by inspection of Definition 5.4.25, using Proposi-
tions 5.4.22, 5.4.19, and 5.4.15.

Lemma 5.4.27. N |= EXP(n,m) if and only if 2n = m.

Proof. Immediately from Lemmata 5.4.23 and 5.4.24.

Definition 5.4.28. We define BIT(x, i) ≡ ∃k ≤ x(EXP(i, k) ∧ BIT′(x, k))

Proposition 5.4.29. BIT(x, i) ∈ ΠB
0

Proof. Immediately by inspection of Definition 5.4.28, using Proposi-
tion 5.4.26.

Definition 5.4.30. We define the abbreviation

LOG(x, i) ≡ (i = 0 ∧ x = 0)∨
(∃u ≤ x)(EXP(i, u) ∧ (∀v ≤ x)(v > u → ¬POW2(v)))

Proposition 5.4.31. LOG(b, a) ∈ ΠB
0

Proof. Immediately by inspection of Definition 5.4.30, using Proposi-
tions 5.4.26 and 5.4.8.

Proposition 5.4.32. N |= LOG(m,n) if and only if m > 0 and n =
⌊log2(m)⌋ or m = n = 0.

Proof. Immediately from Proposition 5.4.9 and Lemma 5.4.27.

Recall that, by Lemma 5.2.18, induction for ΣB
0 (α), that is, for all bounded

first-order formulae, is available in V 0(α). Therefore, it is easy to show that
the expected properties of the defined predicates are theorems of V 0(α).

In particular, as theorems of V 0(α), a number x is a power of two if and
only 2x is, products of powers of two are again powers of two, for each x
power of two, there is a y ≤ x power of two such that x = y2 or x = 2y2,
and so on. Moreover, still as a theorem of V 0(α), two numbers are equal if
and only if their binary representations, in the sense of BIT′(·, ·), coincide.
Using the rules of division and remainder, available in V 0(α) immediately
from the definition, it is easy to see that numbers, seen as bit-strings, can
be concatenated. Finally, V 0(α) knows that LOG(y, x) is the graph of a
function, that is, for each x there is precisely one y such that LOG(y, x).
This will justify Notation 5.5.1.
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5.5 The Theories V i/j(α)

As mentioned in the beginning of this section (on page 63) one of the restric-
tions of bounded arithmetic is, that induction is only available up to log(x)
and, given that exponentiation is not available, this is a proper restriction.
It is therefore natural to consider theories with induction further restricted,
allowing iteration only up to a (fixed) iterate of the logarithm function.

Notation 5.5.1. For s and t number terms we write s = |t| as a shorthand
for LOG(t, s).

Remark 5.5.2. Recall that in Proposition 5.4.31 we showed that s = |t| is
a ΠB

0 -formula.

Definition 5.5.3. For n ∈ N a natural number, we define by (meta)induction
on n the formula s = |t|n as follows

s = |t|0 ≡ s = t
s = |t|n+1 ≡ ∃x ≤ t(x = |t| ∧ s = |x|n)

Proposition 5.5.4. s = |t|n ∈ ΠB
0

Proof. By induction on n, using Remark 5.5.2.

Definition 5.5.5 (F -Lj-Induction Rule). If F is a set of formulae, then by
“F -Lj-Induction” we denote the scheme

Γ,¬A(a), A(a + 1)

Γ,¬(s = |t|j),¬A(0), A(s)

for all formulae A(x) ∈ F , where a is required to be an eigenvariable, that
is, is required not to be free in Γ, A(0). Here s, t may be any terms of the
language.

Definition 5.5.6 (V i/j(α)). The system V i/j(α) is defined to be V 0(α) plus
ΣB

i (α)-Lj-Induction.

Remark 5.5.7. Note that the t in the F -Lj-Induction Rule only serves to
witness that the place up to which we do induction is small, compared to the
size of usual number terms. In the special case j = 0 we can take t = s and
the alternative s 6= s can be cut against the corresponding equality axiom.
So, in essence, V i/0 has the following ΣB

i -induction rule

Γ,¬A(a), A(a + 1)

Γ,¬A(0), A(s)
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Proposition 5.5.8. Over V 0, the ΣB
i (α)-Lj-induction rule implies the ΠB

i (α)-
Lj-induction rule.

Proof. Argue informally in the system with V 0 and ΣB
i (α)-Lj-induction.

Let B(x) be ΠB
i and assume ∀a(¬B(a) ∨ B(a + 1)). Moreover, let N be

short for |t|j. We have to show ¬B(0) ∨B(N).
Let x be arbitrary and instantiate our assumption by N − x − 1. This

yields ¬B(N − (x+1))∨B(N−x). Since x was arbitrary we have ∀x[B(N −
x) ∨ ¬B(N − (x+ 1))]. Using the abbreviation C(x) ≡ ¬B(N − x) this can
be written as ∀x[¬C(x) ∨ C(x+ 1)]. Hence induction on the ΣB

i (α)-formula
C(x) yields ¬C(0)∨C(N) which is the same as B(N)∨¬B(0). This finishes
the proof.
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6 Propositional Translations

Having a boundedness result available with Theorem 4.2.17, we can obtain
limits on the provability of the sequential iteration principle for certain arith-
metical theories—provided we can translate them into AC0-Tait in a shallow
way. This translation is carried out in this section.

Propositional translations have a long tradition in mathematical logic.
In the context of Bounded Arithmetic they are often called “Parris-Wilkie
translation” due to their use by Paris and Wilkie [50]. Already Schütte’s
ω-rule [56] essentially is a propositional translation: a statement ∀xA(x) is
shown by showing A(n) for every n ∈ N, as if ∀xA(x) was a big conjunction.
In the Tait calculus, propositional translations were used already in the very
paper [62] that introduced this calculus.

6.1 Translating Formulae

The first step in our propositional translation is to associate a propositional
formula to every formula in our language L2(α) of two-sorted arithmetic. The
translation will be guided by the intuition that the string sort corresponds to
finite sequences of truth values; the number sort will be translated away, by
unfolding bounded number quantifiers. However, the translation of a string
X as bit-vectors has an underlying size parameter |X|. So we will end up
with dynamic formulae.

Notation 6.1.1. To have the presentation more uniform we use ∀0A and
∃0A as abbreviations for A. Similarly, ∀−1A and ∃−1A are also abbreviations
for A.

Also, we use
∨

0,
∧

0,
∨

1A, and
∧

1A as abbreviations for F, T, A, and
A, respectively.

Definition 6.1.2 (‖A‖~n). By induction on L2(α)-formulae we define for ev-
ery ΠB

∞-formula A without free number variables, every list X1, . . . ,Xk of sec-
ond order variables such that the free variables ofA are among the X1, . . . ,Xk,
and every list n1, . . . , nk of natural numbers a propositional formula (Defini-
tion 3.1.4)

‖A(~X)‖~n

as follows.

• For the “arithmetic” atomic formulae we set

‖s(|~X|) = t(|~X|)‖~n =







T (s(~n))N = (t(~n))N

F otherwise

87



6 PROPOSITIONAL TRANSLATIONS

and similar for s 6= t, s ≤ t and s ≥ t.

• For atomic formulae Xi
[~s(|~X|) ](t(| ~X|)) we set

‖Xi
[~s](t(| ~X|))‖~n =







pXi

j j < ni − 1

T j = ni − 1

F otherwise

where
j = (〈s1(~n); 〈. . .; 〈sk(~n); t(~n)〉〉〉)N

The definition for negated string terms X̄
[~s(| ~X|)]
i (t(| ~X|)) is similar.

• For parameter formulae α(Xi
[~s(| ~X|)]) we set

‖α(Xi
[~s])‖~n =

∨

ℓ≤ni
( (

∧

ℓ≤j<ni
¬‖Xi

[~s ](j)‖~n) ∧ ‖Xi
[~s ](ℓ− 1)‖~n

∧αℓ−1(‖Xi
[~s ](ℓ−2)‖~n, . . . , ‖Xi

[~s ](0)‖~n) )

and similar for the other cases (negated parameter, negated variable).
Here the understanding is that the conjuncts α−1() and ‖Xi

[~s ](−1)‖~n

should be considered as not present.

• For conjunction and disjunction ‖·‖~n is homomorphic, that is ‖A ∧B‖~n =
‖A‖~n ∧ ‖B‖~n and ‖A ∨B‖~n = ‖A‖~n ∨ ‖B‖~n.

• Bounded number quantification is translated as big disjunctions and
conjuctions.

‖∀x < t(|~X|)A(x, ~X)‖~n =
∧

i<(t(~n))N

‖A(i, ~X)‖~n

‖∃x < t(|~X|)A(x, ~X)‖~n =
∨

i<(t(~n))N

‖A(i, ~X)‖~n

• Bounded string quantification is translated by (administrative) boolean
quantification.

‖∀X < t(|~X|)A(X, ~X)‖~n =
∧

i<(t(~n))N

∀i−1p
X
0 . . . p

X
i−2‖A(X, ~X)‖i,~n

‖∃X < t(|~X|)A(X, ~X)‖~n =
∨

i<(t(~n))N

∃i−1p
X
0 . . . p

X
i−2‖A(X, ~X)‖i,~n
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Remark 6.1.3. ‖·‖~n is homomorphic with respect to negation, that is
‖¬A‖~n ≡ ¬‖A‖~n.

Proof. Induction on A.

Proposition 6.1.4. dp(‖A‖~n) ≤ 2dp(A) + 1

Proof. Trivial induction on A.
(The factor 2 comes in, since the translation of ∃<Xt or ∀<Xt is of the

form
∨

k ∃k or
∧

k ∀k, respectively. The additional constant is due to the fact
that dp(‖α(T)‖~n) = 3.)

Definition 6.1.5 ([[A]]). If A is a L2(α)-formula in ΠB
∞ we define its propo-

sitional translation [[A]] to be the dynamic formula

[[A]] = (‖A(n, . . . , n,X1, . . . ,Xk)‖n,...,n)n∈N

where ~x is an enumeration of the free number variables and X1, . . . ,Xk is an
enumeration of the free string variables of A(~x, ~X).

Remark 6.1.6. Immediately from the symmetry of Definition 6.1.2 we see
that [[A]] is well defined, i.e., is independent of the order in which the free
string and number variables are enumerated.

Proposition 6.1.7. If A ∈ ΣB
i (α) then [[A]] ∈ Σq

i (α).

Proof. Induction onA, following the inductive Definition 5.1.17 of ΣB
i (α).

Lemma 6.1.8. If t(~x, | ~X|) is a term of the language L2(α) of two-sorted
bounded arithmetic, ~p,~q are polynomials, then the function

N → N

n 7→
(

t(
−−→
p(n) ,

−−→
q(n) )

)N

is a polynomial function.

Proof. By induction on the buildup of t, see Definition 5.1.1.

Lemma 6.1.9. If A(~x, ~X) is a L2(α)-formula, ~p,~q are polynomial functions,

there is a polynomial function f such that for every n ∈ N and all ~k ≤ ~p(n)

and all ~ℓ ≤ ~q(n) we have

|‖A(~k, ~X)‖~ℓ| ≤ f(n)

Proof. Induction on A.

Corollary 6.1.10. |[[A]]| ∈ nO(1)

Proof. Lemma 6.1.8 with all the ~p,~q the identity, and Lemma 6.1.9.

89
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6.2 Translating V 0(α) Proofs

Definition 6.2.1. We write ⊢h
⋆,c Γ to denote ∅ ⊢h

w,c Γ where w = max{|A| |
A ∈ Γ}.

Proposition 6.2.2. If purely propositional, α-free, closed formula A is true,
then ⊢dp(A)

⋆,0 A.

Proof. By Induction on A.
The only true closed atom is T, which can be derived in a derivation of

height 1.
If A is true and is of the form

∨

k
~A then, for some 1 ≤ i ≤ k we have

that Ai is true. Therefore we have ⊢dp(Ai)
⋆,0 Ai and hence, by one

∨

k-rule we

have ⊢dp(Ai)+1
⋆,0

∨

k
~A.

If A is true and of the form
∧

k
~A then for all 1 ≤ i ≤ k we have that Ai

is true and therefore, by induction hypothesis, ⊢dp(Ai)
⋆,0 Ai. So, by one

∧

k-rule

we have ⊢max{dp(Ai)|1≤i≤k}+1
⋆,0

∧

k
~A.

Lemma 6.2.3. If A(~x, |~X|) is a true bounded first-order formula without

atoms of the form T(t) or α(T), then ⊢2·dp(A)+1
⋆,0 ‖A(~m, |~X|)‖~n for arbitrary

~m,~n ∈ N. Here w = |‖A(~m, |~X|)‖~n|.

Proof. By Proposition 6.1.4 the depth dp(‖A‖~n) is bound by the constant
2 · dp(A) + 1, so the claim follows from Proposition 6.2.2.

Note that by induction on A we can show that ‖A(~m, |~X|)‖~n is true, if
A(~m,~n) is.

Proposition 6.2.4. There is a constant depth proof of the propositional
translation of the row axiom.

Proof. We note that ‖X[~t](s) ↔ X(〈t1; 〈. . .; 〈tk; s〉〉〉)‖~n ≡ ℘ ↔ ℘ for some
℘ ∈ {T,F, pX

0 , p
X
1 , p

X
2 , . . .} which is a constant-depth logical tautology. Hence

the claim follows by Proposition 6.2.2.

Lemma 6.2.5. If A(~x, ~X) is one of the basic axioms (Definition 5.2.3), then,
for some constant c ∈ N, we have

⊢c
⋆,0‖A(~n, ~X)‖~n′

for all ~n, ~n′ ∈ N.

Proof. All the first order basic axioms are true formulae with an upper bound
on their depths and size. Hence the claim follows from Lemma 6.2.3.

So the only basic axioms we still have to look at are
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• X(y) → y < |X|,

• y + 1 = |X| → X(y), and

• t = t′ → X(t) → X(t′).

Let n and ~m be natural numbers and abbreviate (t(~m))N by i. Then

‖X(t(~m)) → t(~m) < |X|‖n =







pX
i → T i < n− 1

T → T i = n− 1

F → F otherwise

and therefore can be derived using the truth axiom, followed by an ∨-
introduction.

Moreover, with the same notations,

‖t(~m) + 1 = |X| → X(t(~m))‖n =







F → pX
i i < n− 1

T → T i = n− 1

F → F otherwise

and again, this can be derived using the truth axiom, followed by an ∨-
introduction.

Finally, let ~m, n ∈ N. We use the abbreviations i = (t(~m))N and j =
(t′(~m))N. Then the propositional translation of the string extensionality ax-
iom is of the following shape.

‖t(~m) = t′(~m) → X(t(~m)) → X(t′(~m))‖n =







F → . . . i 6= j

T → pX
i → pX

i i = j < n− 1

T → T → T i = j = n− 1

T → F → F i = j > n− 1

In either case using the truth axiom or the identity axiom does the job,
followed by two ∨-introductions.

Lemma 6.2.6. For some constants c, c′ ∈ N we have

⊢c
⋆,mc′‖X

[~s ] = Y[~t ] → α(X[~s ]) → α(Y[~t ])‖n,m,~n
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6 PROPOSITIONAL TRANSLATIONS

Proof. We use the abbreviations

ki = (〈s1; 〈. . .; 〈sn′; i〉〉〉)N

ℓi = (〈t1; 〈. . .; 〈tm′ ; i〉〉〉)N

in order to facilitate notation. Also, by abuse of notation, we write pX
j to

stand for T or F, if j = n − 1 or j > n − 1, respectively. Similar for Y and
the negated variables.

For every i we have a derivation

¬pX
ki
, pX

ki
pY

ℓi
,¬pY

ℓi ∧
¬pX

ki
, pY

ℓi
, pX

ki
∧ ¬pY

ℓi ∨
¬pX

ki
, pY

ℓi
, pX

ki
6↔ ¬pY

ℓi
∨

n

¬pX
ki
, pY

ℓi
,¬‖∀i < |X|.X[~s ](i) ↔ Y[~t ](i)‖n,m,~n

∨
¬pX

ki
, pY

ℓi
,¬‖X[~s ] = Y[~t ]‖n,m,~n

and similar derivations of pX
ki
,¬pY

ℓi
,¬‖X[~s ] = Y[~t ]‖n,m,~n.

Writing
−→
pX
· for pX

kj−2
, . . . , pX

k0
and

−→
pY
· for pY

ℓj−2
, . . . , pY

ℓ0
we first get, for

every i, a derivation

¬‖X[~s ] = Y[~t ]‖n,n,~n,¬pX
ki
, pY

ℓi ∨,∨
¬‖X[~s ] = Y[~t ]‖n,n,~n,¬pX

ki
∨ pY

ℓi

¬‖X[~s ] = Y[~t ]‖n,n,~n, p
X
ki
,¬pY

ℓi ∨,∨
¬‖X[~s ] = Y[~t ]‖n,n,~n,¬p

Y
ℓi
∨ pX

ki ∧
¬‖X[~s ] = Y[~t ]‖n,n,~n, p

X
ki
↔ pY

ℓi

and hence, by the parameter extensionality rule, we get the following deriva-
tion.

ᾱn−1(
−→
pX
· ), αn−1(

−→
pX
· ) ¬‖X[~s ] = Y[~t ]‖n,n,~n, p

X
ki
↔ pY

ℓi (all i)

¬‖X[~s ] = Y[~t ]‖n,n,~n, ᾱn−1(
−→
pX
· ), αn−1(

−→
pY
· )

Now let 0 ≤ j ≤ m. We set ∆j to be the set {¬pY
ℓj−1

, pY
ℓj
, pY

ℓj+1
, . . . , pY

ℓn
},

again with the understanding that ¬pY
k−1

should be considered as not present.
Note that the empty sequent can be derived from the ∆j by cuts only.

Adding to the above derivation an
∧

-rule to all the identity axioms for
the elements of ∆j , followed by an

∨
-introduction we obtain a derivation of

∆j ,¬‖X
[~s ] = Y[~t ]‖n,m,~n, ᾱn−1(

−→
pX
· ), ‖α(Y[~t ])‖n,m,~n
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6.2 Translating V 0(α) Proofs

From here an
∨

rule gives one of the disjuncts of ‖α(X[~s ])‖n,m,~n. The other

can, in the context ∆j , ¬‖X[~s ] = Y[~t ]‖n,m,~n, be trivially derived. Hence an
∧

-rule gives now

∆j ,¬‖X
[~s ] = Y[~t ]‖n,m,~n,¬‖α(X[~s ])‖n,m,~n‖α(Y[~t ])‖n,m,~n .

Applying the multi-cut rule to all these derivations removes the ∆j and two
∨-rules finish the desired derivation.

Lemma 6.2.7. Let A be a quantified propositional formula. Then ⊢O(A)
⋆,0

¬A, (T ↔ A) and ⊢O(A)
⋆,0 A, (F ↔ A).

Proof. Consider the derivations

Lemma 3.3.11
A,¬A

¬A, (T → A)

¬A,T

(A→ T)

¬A, (T ↔ A)

and
Lemma 3.3.11

A,¬A

A, (A→ F)

¬A,T

(F → A)

A, (F ↔ A)

which are as desired.

Lemma 6.2.8. Let A(x, ~x, ~X) be a ΣB
0 (α)-formula, that is, a purely arith-

metic formula. Then there is a constant c ∈ N, depending only (in fact

linearly) on dp(A), such that for all natural numbers g, ~f we have

⊢c
⋆,g2+1 ‖∃Z ≤ g∀i < g(Z(i) ↔ A(i, ~g, ~X))‖~f .

Proof. We use the abbreviation ϕi ≡ ‖A(i, ~g, ~X)‖~f . Moreover, for 1 ≤ f ≤ g
we set

∆f = {¬ϕf−1, ϕf , ϕf+1, . . . , ϕg−1}

and we also set
∆0 = {ϕ0, . . . , ϕg−1} .

It should be noted that all the ∆i contain purely propositional formulae only
and that from ∆0, . . . ,∆g the empty sequent can be derived using only cuts
as follows

∆0 ∆1
ϕ1, . . . , ϕg−1 ∆2

ϕ2, . . . , ϕg−1 ∆3

. . . . . .
ϕg−1 ∆g

∅
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6 PROPOSITIONAL TRANSLATIONS

We write Γf as a shorthand for the set

Γf = {¬(p0 ↔ ϕ0), . . . ,¬(pf−2 ↔ ϕf−2)}

that will later serve as the comprehension context. Note that Γf contains
p0, . . . , pf−2 as free variables. For 0 ≤ f ≤ g we now can have the following
derivations

Proposition 3.3.11
. . . . . .

(pi ↔ ϕi),¬(pi ↔ ϕi)

Lemma 6.2.7

(T ↔ ϕf−1),¬ϕf−1

Lemma 6.2.7. . . . . .
(F ↔ ϕi), ϕi ∧

g

‖∀i < g(Z(i) ↔ A(i, ~g, ~X))‖f, ~f ,Γf ,∆f
∃f−1

∃f−1p0 . . . pf−2‖∀i < g(Z(i) ↔ A(i, ~g, ~X))‖f, ~f ,Γf ,∆f ∨

g

‖∃Z < g + 1∀i < g(Z(i) ↔ A(i, ~g, ~X))‖~f ,Γf ,∆f
comp

‖∃Z < g + 1∀i < g(Z(i) ↔ A(i, ~g, ~X))‖~f ,∆f

Taking all these derivations and applying one multi-cut rule yields the
claim.

Theorem 6.2.9. For every V 0(α)-proof of Γ with only ΣB
1 (α) cuts there are

polynomials p, q, and there is a constant c ∈ N such that for all ~f,~g ∈ N

⊢c
p(~f,~g),q(~f,~g)

‖Γ(~g)‖~f

Proof. Induction on the derivation. If the derivation is a basic axiom, then
the claim follows from Lemma 6.2.5. If it is the string extensionality axiom,
the claim follows from Lemma 6.2.6. If it is the row axiom, the claim follows
by Proposition 6.2.4.

If the derivation is a ΣB
0 (α)-comprehension axiom, then the claim follows

from Lemma 6.2.8 using that by Lemma 6.1.9 the formulae are of small size.

If the last inference is a cut, the cut formula necessarily is Σq
1(α)-formula

(compare Proposition 6.1.7), that is, is in the Σ-closure of the purely propo-
sitional formulae. Therefore, we can refer to Corollary 3.4.7. Note that the
sum of two constants still is a constant.

So, what remains are the rules of two-sorted predicate logic. The propo-
sitional rules can be translated into the corresponding propositional rules
on the translated formulae. Since Γ consists only of bounded formulae, the
only thing still to be considered are the introduction rules for the bounded
quantifiers.
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6.2 Translating V 0(α) Proofs

If the last rule was an ∀x < t-introduction

Γ, a ≥ t, A(a, ~x)

Γ, ∀x < t.A(x, ~x)

the induction hypotheses give us derivations of ‖Γ(~g)‖~f ,F, ‖A(i, ~g)‖~f for 0 ≤

i < tN. By strengthening we can get rid of the F and an
∧

tN introduction
gives the desired derivation.

If the last rule was

Γ, s(~x, |~X|) < t(~x, |~X|) ∧ A(s, ~x)

Γ, ∃x < t.A(x, ~x)

we argue similarly, using ∧-inversion and
∨

tN-introduction.

If the last rule was

Γ, |Y| ≥ t(~x, |~X|), A(~x,Y, ~X)

Γ, ∀X < t.A(~x,Y, ~X)

we argue as follows. Let p′(~f,~g) be a polynomial bounding (t(~f,~g))N. By

induction hypothesis, derivations of ‖Γ(~g)‖~f ,F, ‖A(~g,Y, ~X)‖f, ~f for all f <

tN ≤ p′(~f,~g). The eigenvariable condition guarantees that the pY
0 , . . . , p

Y
f−2

are eigenvariables. So by strengthening and ∀f−1-introduction we get deriva-

tions of ‖Γ(~g)‖~f , ∀f−1p
Y
0 . . . p

Y
f−2‖A(~g,Y, ~X)‖f, ~f for all f < tN. An

∧

tN-
introduction finishes the derivation.

If the last rule was

Γ, |Y| < t(~x, ~|X|) ∧ A(~x,Y, ~X)

Γ, ∃Y < t.A(~x,Y, ~X)

We distinguish between f < t(~g, ~f)N and f ≥ tN. In the second case, the
induction hypothesis yields ‖Γ(~g)‖~f ,F∧. . ., so ∧-inversion and strengthening
yield the claim.

In the first case the induction hypothesis yields us a proof of ‖Γ(~g)‖f, ~f ,T∧

‖A(~g,Y, ~X)‖f, ~f and ∧-inversion followed by ∃f−1-introduction and
∨

tN-intro-
duction yields the claim.

Corollary 6.2.10. For every V 0-proof of Γ with only ΣB
1 cuts, in particular

for every free-cut free proof, there is a dynamic proof d such that

d ⊢O(1)

nO(1),nO(1) [[Γ]]

Proof. Use Theorem 6.2.9.
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6 PROPOSITIONAL TRANSLATIONS

6.3 Translating Induction

As is well known in proof theory, induction up to each particular number n
can be translated into a series of cuts. In other words, from A(0) → A(1)
and A(1) → A(2) we can conclude—using only propositional logic—that
A(0) → A(2); together with A(2) → A(3) this implies A(0) → A(3) and so
on.

To obtain the optimal height, we do not cut in the linear way just
sketched. Instead we use a balanced tree of cuts, that is, we obtain a proof of
A(0) → A(n) by cutting proofs of A(0) → A(⌊n/2⌋) and A(⌊n/2⌋) → A(n).
In this way, our proofs will have only logarithmic height.

Lemma 6.3.1. If n′ is a power of 2, 1 ≤ n ≤ n′, C is a set of formulae,
A1, . . . , An ∈ C, and for all 0 ≤ i < n we have

⊢h
C;w,c Γ,¬Ai, Ai+1

then
⊢h+log(n′)
C;w,c Γ,¬A0, An

Proof. By induction on n′. If n′ = 1, then there is nothing to show as the
claim is already one of the premises.

So let n′ = 2m. We may without loss of generality assume that n > m for
otherwise the claim is directly the induction hypothesis. Now, by induction
hypothesis get

⊢h+log(m)
C;w,c Γ,¬A0, Am and ⊢h+log(m)

C;w,c Γ,¬Am, An

By an additional cut on Am ∈ C we get the claim.

Remark 6.3.2. In Lemma 6.3.1 we can always choose n′ to be n′ = 2log(n)

which is a power of 2, and by Proposition 2.1.24 we have n ≤ 2log(n) = n′.
Moreover, log(n′) = log

(
2log(n)

)
= log(n) by Proposition 2.1.26. So, in

Lemma 6.3.1 we can read the log(n′) as log(n).

Recall Definition 2.1.10. In particular, we will use log(j+1)(n) as an ab-
breviation for log(log(. . . (log(

︸ ︷︷ ︸

j+1

n)))).

Theorem 6.3.3. For every V i/j(α)-proof of Γ with only ΣB
i+1(α) cuts there

are polynomials p, q, r, and there are constants c, C ∈ N such that for all
~f,~g ∈ N

⊢c log(j+1)(r(~f,~g))+C

Σq
i (α);p(~f,~g),q(~f,~g)

‖Γ(~g)‖~f
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6.4 Translating Unrelativised Computation

Proof. We argue as in the proof of Theorem 6.2.9. As for cuts, note that for
any two elements of the set {c · log(j+1)(r) + C | c, C ∈ N, r a polynomial}
there is an element in the set that dominates the sum.

So, the only remaining case to consider is that the last rule was an ΣB
i (α)-

Lj-induction Rule, say

Γ(~x),¬A(~x, a), A(~x, a+ 1)

Γ(~x),¬(s(~x, |~X|) = |t(~x, | ~X|)|j),¬A(~x, 0), A(~x, s)

with a an eigenvariable.
If s(~g, ~f)N 6= |t(~g, ~f)|Nj the conclusion contains T and can therefore be de-

rived by an axiom. So we assume that s(~g, ~f)N = |t(~g, ~f)|Nj . By Lemma 6.1.8

there is a polynomial r, such that s(~g, ~f)N ≤ log(j)(r(~f,~g)). As for any
two polynomials there is another polynomial that dominates both, we can,
without loss of generality assume that this is the same as the polynomial r

obtained by the induction hypothesis.
By induction hypothesis we have proofs

⊢c log(j+1)(r(~f,~g))+C

Σq
i (α);p(~f,~g),q(~f,~g)

‖Γ(~g)‖~f ,¬‖A(~g, k)‖~f , ‖A(~g, k + 1)‖~f

for 0 ≤ k ≤ s(~g, ~f)N. By Lemma 6.3.1 we obtain therefore a derivation

⊢
c log(j+1)(r(~f,~g))+C+log(s(~g, ~f)N)

Σq
i (α);p(~f,~g),q(~f,~g)

‖Γ(~g)‖~f ,¬‖A(~g, 0)‖~f , ‖A(~g, s(~g, |~X|))‖~f

which, by weakening with F gives the desired conclusion. As for the height,
we calculate that log(s(~g, ~f)N) ≤ log(log(j)(r(~f,~g))) = log(j+1)(r(~f,~g)). Hence
we can use the constants c+ 1, C and the claim follows.

Corollary 6.3.4. For every V i/j(α)-proof of Γ with only ΣB
i+1 cuts, in par-

ticular for every free-cut free proof, there is a dynamic proof d such that

d ⊢O(log(j+1))

Σq
i ;nO(1),nO(1) [[Γ]]

Proof. Use Theorem 6.3.3.

6.4 Translating Unrelativised Computation

Every method has its blind spots. In standard proof theory, for example, it
is a folklore result that true Π0

1-formulae can be added without affecting the
height of the corresponding semi-formal proofs, and hence without affecting
the proof theoretic ordinal.
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6 PROPOSITIONAL TRANSLATIONS

As our measure of “sequentiality” heavily relies on sequential queries
to the oracle α, it is no surprise that it cannot appreciate the strength of
unrelativised computation. Formally, this is reflected in the observation,
that such computations translate into constant-height polynomial-size AC⋆-
proofs. We now show this for unrelativised first-order formulae without free
set-variables and for the naive computation of the transitive closure. Even
though we will not make use of this fact, it should be obvious to the reader
that these proofs trivially generalise to other unrelativised polynomial-time
computation.

Proposition 6.4.1. If A(~x) is a true, bounded, first-order L2(α)-formula
without free set-variables, then ‖A(~n)‖ has constant-height AC0-Tait proofs.

Proof. Induction on A. If A(~n) is a true equation or inequation, it will
translate into T. If A(~n) ≡ ∀x < tB(x, ~n) then, for all m < tN, the formula
B(m,~n) is true. Hence we have constant height proofs for ‖B(m,~n)‖; a use
of the

∧

tN-rule yields a derivation of ‖∀x < t.B(x, ~n)‖. The other connectives
can be handled similarly.

We’ll know define the formula δNL
step(~p, ℓ, k) which expresses the property

that, in the graph with adjacency matrix (pi,j)i,j, there is a path of length at
most ℓ from 0 to k.

Definition 6.4.2 (δNL
step(~p, ℓ, k)). For p00, . . . , pn−1,n−1 a list of n2 proposi-

tional variables, 0 ≤ k, ℓ < n we define the propositional formula δNL
step(~p, ℓ, k)

as

δNL
step(~p, ℓ, k) = ∃(ℓ+1)n~q . (q0,0 ↔ T)

∧
∧

j 6=0(q0,j ↔ F)

∧
∧

i<ℓ,j (qi+1,j ↔ (qi,j ∨
∨

k(qi,k ∧ pk,j)))

∧ qℓ,k

where all the conjunctions are to be read as one big conjunction.

Remark 6.4.3. Immediately by Definition 6.4.2 we note that δNL
step(~p, ℓ, k) is

α-free. Hence the liberal comprehension rule of AC⋆-Tait is available to these
class of formulae.

Also, the size of the formulae δNL
step(~p, ℓ, k) is polynomial in the sense that

there is a natural number C such that for all n and 0 ≤ k, ℓ < n we have
sz(δNL

step(~p, ℓ, k)) ≤ C · n2 · ℓ+ C ′.
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6.4 Translating Unrelativised Computation

Lemma 6.4.4. There are constant height AC⋆-Tait proofs of the following
statements which are the usual defining equations of δNL

step(~p, ℓ, k).

δNL
step(~p, 0, 0) ↔ T

δNL
step(~p, 0, k + 1) ↔ F

δNL
step(~p, ℓ+ 1, k) ↔

(

δNL
step(~p, ℓ, k) ∨

∨

j(δ
NL
step(~p, ℓ, j) ∧ pj,k)

)

Proof. The first two equivalences are simple, hence we concentrate on the
last one and showing both implications separately.

Let Fℓ(~q) be short for (q0,0 ↔ T) ∧
∧

j 6=0(q0,j ↔ F) ∧
∧

i<ℓ,j(qi+1,j ↔

(qi,j ∨
∨

k(qi,k ∧ pk,j))), implicitly fixing ~p. In other words, δNL
step(k, ℓ, ~p) ≡

∃(ℓ+1)n~q.(Fℓ(~q) ∧ qℓ,k). Note that Fℓ+1(~q, ~q
′) ≡ Fℓ(~q) ∧

∧

j(q
′
ℓ+1,j ↔ (qℓ,j ∨∨

k(qℓ,k ∧ pk,j))). Moreover note that the formulae Fℓ(~q) are of constant
depth.

Consider the following derivation.

. . .

¬Fℓ(~q), Fℓ(~q) ¬qℓ,j , qℓ,j
∧

¬qℓ,j,¬Fℓ(~q), Fℓ(~q) ∧ qℓ,j
∃

¬qℓ,j ,¬Fℓ(~q), δ
NL
step(ℓ, j, ~p) ¬pj,k, pj,k

∧
¬pj,k,¬qℓ,j ,¬Fℓ(~q), δ

NL
step(ℓ, j, ~p) ∧ pj,k ∨

¬pj,k,¬qℓ,j,¬Fℓ(~q),
∨

j(δ
NL
step(ℓ, j, ~p) ∧ pj,k)

∨,∨
¬pj,k ∨ ¬qℓ,j,¬Fℓ(~q),

∨

j(δ
NL
step(ℓ, j, ~p) ∧ pj,k) . . . ∧

∧

j(¬pj,k ∨ ¬qℓ,j),¬Fℓ(~q),
∨

j(δ
NL
step(ℓ, j, ~p) ∧ pj,k)

Now we introduce the abbreviation

Gℓ,k ≡
∨

j

(δNL
step(ℓ, j, ~p) ∧ pj,k)

and continue the proof as follows.

(continued)
∧

j(¬pj,k ∨ ¬qℓ,j),¬Fℓ(~q), Gℓ,k ¬qℓ,k, qℓ,k
∧

¬qℓ,k ∧
∧

j(¬pj,k ∨ ¬qℓ,k),¬Fℓ(~q), Gℓ,k, qℓ,k ¬qℓ+1,k, qℓ+1,k
∧

qℓ+1,k ∧ ¬qℓ,k ∧
∧

j(¬pj,k ∨ ¬qℓ,k),¬Fℓ(~q), Gℓ,k, qℓ,k,¬qℓ+1,k
∨

¬(qℓ+1,k ↔ (qℓ,k ∨
∨

j(qℓ,k ∧ pj,k))),¬Fℓ(~q), Gℓ,k, qℓ,k,¬qℓ+1,k
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6 PROPOSITIONAL TRANSLATIONS

We continue again.

¬Fℓ(~q), Fℓ(~q)
(continued)

. . . ,¬qℓ+1,k, qℓ,k
∧

¬Fℓ(~q), Gℓ,k,¬(qℓ+1,k ↔ (qℓ,k ∨
∨

j(qℓ,j ∧ pj,k))),¬qk,ℓ+1, Fℓ(~q) ∧ qℓ,k
∃

¬Fℓ(~q), Gℓ,k,¬(qℓ+1,k ↔ (qℓ,k ∨
∨

j(qℓ,j ∧ pj,k))),¬qk,ℓ+1, δ
NL
step(~p, ℓ, k)

By three
∨

-rules we obtain

Gℓ,k,¬Fℓ(~q) ∨
∨

k

(¬(q′ℓ+1,k ↔ (qℓ,k ∨
∨

j

(qℓ,j ∧ pj,k)))) ∨ ¬qk,ℓ+1, δ
NL
step(~p, ℓ, k)

and finally by an ∀-rule

Gℓ,k,¬δ
NL
step(~p, ℓ+ 1, k), δNL

step(~p, ℓ, k)

This shows one of the implications.

The other implication reduces to providing derivations

• δNL
step(~p, ℓ+ 1, k),¬δNL

step(ℓ, j, ~p),¬pj,k and

• δNL
step(~p, ℓ+ 1, k),¬δNL

step(~p, ℓ, k)

for then we can take the derivation

. . .

δNL
step(~p, ℓ+ 1, k),¬δNL

step(ℓ, j, ~p),¬pj,k
∨,∨

δNL
step(~p, ℓ+ 1, k),¬δNL

step(ℓ, j, ~p) ∨ ¬pj,k . . . ∧

δNL
step(~p, ℓ+ 1, k),

∧

j(¬δ
NL
step(ℓ, j, ~p) ∨ ¬pj,k)

and obtain

δNL
step(~p, ℓ+ 1, k),¬δNL

step(~p, ℓ, k)

(continued)

δNL
step(~p, ℓ+ 1, k),

∧

j(¬δ
NL
step(ℓ, j, ~p) ∨ ¬pj,k)

∧
δNL
step(~p, ℓ+ 1, k),

∧

j(¬δ
NL
step(ℓ, j, ~p) ∨ ¬pj,k) ∧ ¬δNL

step(~p, ℓ, k)

First we provide a derivation for δNL
step(~p, ℓ+ 1, k),¬δNL

step(ℓ, j, ~p),¬pj,k. Let

∆ = ¬(q′ℓ+1,1 ↔ qℓ,1 ∨
∨

k

(qℓ,k ∧ pk,1)), . . . ,¬(q′ℓ+1,n ↔ qℓ,n ∨
∨

k

(qℓ,k ∧ pk,n))
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and consider the following fragment of a derivation

. . . (*) . . .
∀

∆, Fℓ(~q) ∧
∧

j(q
′
ℓ+1,j ↔ qℓ,j ∨

∨

k(qℓ,k ∧ pk,j)) ∧ q′ℓ+1,k,¬Fℓ(~q),¬qℓ,j,¬pj,k
∃

∆, δNL
step(~p, ℓ+ 1, k),¬Fℓ(~q),¬qℓ,j,¬pj,k

(comp)
δNL
step(~p, ℓ+ 1, k),¬Fℓ(~q),¬qℓ,j,¬pj,k

∨,∨
δNL
step(~p, ℓ+ 1, k),¬Fℓ(~q) ∨ ¬qℓ,j ,¬pj,k

∀
δNL
step(~p, ℓ+ 1, k),¬δNL

step(ℓ, j, ~p),¬pj,k

where we used the AC⋆-specific comprehension rule.
We will now provide the derivations needed at the place marked (*).

Those coming from the individual conjunctions in Fℓ(~q) can be handled by
using the constant-height tertium-non-datur proofs for them and matching
them with the disjunction ¬Fℓ(~q). The conjuncts of the form q′ℓ+1,j ↔ qℓ,j ∨∨

k(qℓ,k ∧ pk,j) can be handled by tertium non datur again, this time leaving
an element of ∆. So what remains is the case q′ℓ+1,k. Here we note that

¬(q′ℓ+1,k ↔ qℓ,k ∨
∨

k′

(qℓ,k′ ∧ pk′,k)),¬qℓ,j,¬pj,k, q
′
ℓ+1,k

is trivial tautology that can be shown by a constant height proof.

The case δNL
step(~p, ℓ+ 1, k),¬δNL

step(~p, ℓ, k) is completely similar, except that
at the end the trivial tautology

¬(q′ℓ+1,k ↔ qℓ,k ∨
∨

k′

(qℓ,k′ ∧ pk′,k)),¬qℓ,k, qℓ+1,k

remains, which also has a constant height proof.

For the following proof note that Corollary 3.4.7 which was used in the
proof of Theorem 6.2.9 has its analogue Proposition 4.4.4 for AC⋆-Tait.

Lemma 6.4.5. For every VNL(α)-proof of Γ with only ΣB
1 (α)-cuts, in partic-

ular for every free-cut free proof, there are polynomial-size (in ~f,~g) constant-

height AC⋆-proofs of ‖Γ(~f)‖~g, for ~f,~g ∈ N.

Proof. We build on Theorem 6.2.9, hence we only have to provide constant
height proofs of ∃Yδconn(a,X, Y ) where δconn(a,X,Y) is the formula.

Y(0, 0) ∧ ∀x < a(x 6= 0 → ¬Y(0, x))∧
∀z < a∀x < a [Y(z + 1, x) ↔ (Y(z, x) ∨ ∃y < a(Y(z, y) ∧ X(y, x)))]
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6 PROPOSITIONAL TRANSLATIONS

The proof will end in

· · ·

∆, ‖δconn(n,X,Y)‖〈n;n〉,g ∨
, ∃

∆, ‖∃Yδconn(n,X,Y)‖g
(comp)

‖∃Yδconn(n,X,Y)‖g

where
∆ = {pY

〈i;j〉 ↔ δNL
step(

~pX
· , i, j) | 0 ≤ i, j < n} .

Note that there is no constraint about |Y|, hence we can choose Y of canon-
ical length 〈n;n〉 and have the witness at hand for the

∨
-introduction.

We note that ‖δconn(n,X,Y)‖〈n;n〉,g is (essentially) one big conjunction

and each conjunct is a certain relation between the pY
〈i;j〉. In context ∆,

constant-height proofs can easily be constructed from the constant height
proofs provided by Lemma 6.4.4.

Corollary 6.4.6. VL(α)-proofs can be translated as well into constant height
polynomial-size AC⋆-proofs.

Proof. Immediately from Lemma 6.4.5 and the fact that VL(α) ⊆ VNL(α).

Remark 6.4.7. It should be noted that—even though we only presented
the computation of the transitive closure—the above scheme generalises to
arbitrary unrelativised polynomial-time computations. In fact, the defining
axiom of VNL(α) was formalising the computation of the transitive closure
as a polynomial time algorithm, rather than using the fact that NL ⊆ AC1.

Consider an unrelativised polynomial-size circuit. By existentially quan-
tifying the bits representing the values of the nodes of the lowest ℓ-layers, we
have an unrelativised formula, similar to δNL

step(~p, ℓ, j), describing the value of
the j’th node in the ℓ’th layer. The simple one-step relation between these
nodes can be verified by a constant height proof as above.

As, however, no further arithmetical systems are discussed in this thesis
that are axiomatised by adding unrelativised computation to V 0(α), we do
not spell out a full proof of this observation, but leave it with this remark.

102



7 The Sequential Strength of Theories

We have seen (in Section 4) a tight connection between the height of AC0-
Tait proofs and parallel computation time, as measured by circuits. We have
also seen (in Section 6) how proofs in Bounded Arithmetic relate to dynamic
AC0-Tait proofs. We now show how these connections can be used to con-
struct a measure of the “sequential strength” for arbitrary theories in the
language L2(α). This measure has a strong relation to computational com-
plexity, a relation also witnessed by the fact, that for theories constructed
explicitly from complexity classes we obtain the correct growth rate. This
strong relation of a measure that is well defined for arbitrary two-sorted the-
ories should therefore be useful for other reverse mathematical investigations
with computational complexity in mind.

It should also be noted that the measure presented here shows the same
picture as do the dynamical ordinals [7] in the range where the latter are
defined, that is, in the range from nO(1) to 2n. To see that the two measures
coincide for all the theories investigated so far, one should keep in mind, that
dynamical ordinals compare growth rate with the value of numbers whereas
the sequential strength compares growth rate with the size of numbers. That
explains why for a theory with dynamic ordinal f(log(n)) the sequential
strength is f(n).

So, the present work extends previous approaches in two ways. First, the
range of applicable theories has been extended from growth rates nO(1) . . . 2n

to the full range of O(1) . . . 2n. Secondly, and more importantly, it provides a
clear meaning to the strength measure. So far, it was just an arbitrary growth
rate associated to formal theories without further interpretation. Now it can
be understood as the height of a circuit representing the computational power
inherent in the theory under investigation.

7.1 The Arithmetic Formulation of the Sequential It-

eration Principle

Following the lines mentioned in the introduction to this section, we aim at
an arithmetical formula that translates into the n, ℓ-iteration principle intro-
duced in Definition 4.2.4, or at least something closely related. As it turns
out, we cannot directly obtain ∃4n~p~p

′~q~q ′. Φn,ℓ(~p, ~p
′, ~q, ~q ′); keeping Defini-

tions 4.2.1 and 4.2.2 in mind, we note that a certain shuffling of the 4n bits
is done, in order to obtain the arguments for the parameter α2n. However, in
two-sorted arithmetic, we don’t have enough string terms to perform such a
shuffling right away. Nevertheless, as there are only polynomially many calls
to the parameter and we have the row function ·[·], we can do the usual trick
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7 THE SEQUENTIAL STRENGTH OF THEORIES

to look at the whole “computation transcript”. In other words, our principle
claims the existence of a string where the rows contain all the oracle calls ever
made in the whole computation. Then we can refer to the i’th oracle call by
using just the row function, and the bit shuffling is moved to an arithmetical
formula stating that the individual bits in the various calls are composed in
the correct way.

Notation 7.1.1 (“T′ = T+1”). In accordance with Notation 4.2.3 we write
“T′ = T + 1” for the first order formula

∃i<n.((∀j<i.T′(j))∧¬T′(i)∧(∀j<i.¬T(j))∧T(i)∧(∀i<j<n.(T′(j) ↔ T(j))))

with free variables X, Y and an implicit “size parameter” n, understood from
the context.

Next, we would like to have similar notation for “fX(0) = Y ”, which is
analogous to Notation 4.2.2. However, we cannot just write α(X,Y), as the
latter is not in our language! The same applies to “f(X ) = Y ”, which was
introduced in Notation 4.2.1. We solve this problem by having an implicit
parameter T that serves as scratch pad for the string XY or the strings i,X,
respectively.

Definition 7.1.2 (“fX(0) =(T) Y ”). If T is a string term of the form T ≡

Z[~t], we write “fX(0) =(T) Y ” for the formula

αT

∧ (∀j < n(T(i) ↔ Y(j)))
∧ (∀j < n(T(n+ i) ↔ X(j)))
∧ T(2 · n)
∧ (∀j < |Z|(¬T(2 · n + 1 + j))

with the length parameter n understood.

Remark 7.1.3. In Definition 7.1.2 we made the assumption that the string
term T witnessing the equality be of a particular form T ≡ Z[~t]. It should be
noted that any string term is for that form for some Z. So the only point
in making this assumption was that we are able to “pull off” the underlying
variable of the string term in the last clause. Recall Remark 5.1.3 for a
rationale why we do not have the length function on arbitrary string terms.

Lemma 7.1.4. The quantified propositional formulae

‖∃Z < 〈ℓ; 2n〉“fX(0) =(Z[ℓ]) Y ”‖n,n
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7.1 The Arithmetic Formulation of the Sequential Iteration Principle

and
“f pX

n−1...pX
0 (0) = pY

n−1 . . . p
Y
0 ”

are logically equivalent. Moreover, this equivalence is witnessed by a polyno-
mial (in n) size AC0-Tait proof of constant height.

Proof. Tedious, but elementary. For the implication from the second to the
first formula, we can just use the (reshuffled) pX

n−1 . . . p
X
0 p

Y
n−1 . . . p

Y
0 as wit-

nesses for the existential statement.
For the other implication, note that all the bits occurring under the α are

fixed by the statements in “fX(0) =(Z[ℓ]) Y ”, hence we have all the equiv-
alences needed for the string extensionality rules. To construct derivations
from this, we use proofs, similar to those constructed in Lemma 6.2.6.

Definition 7.1.5 (“f(Y ) =(ℓ,Z) X ”). We write “f(Y ) =(ℓ,Z) X ” for the
formula

∀i<n(Y(i) ↔ α(Z[ℓ+i]))
∧ (∀i<n∀j<n(Z[ℓ+i](j) ↔ X(j)))
∧ (∀i<n∀j<n(Z[ℓ+i](n+ j) ↔ Z[ℓ+n+i](j)))
∧ (∀i<n(Z[ℓ+i](2 · n))
∧ (∀i<n∀j<|Z|(¬Z[ℓ+i](2 · n+ 1 + j))
∧ (∀j<n(¬Z[ℓ+n](j)))
∧ (∀i<n“Z[ℓ+n+i+1] = Z[ℓ+n+i] + 1”)

with the length parameter n understood.

Remark 7.1.6. Definition 7.1.5 formalises ∀i < n(Y(i) ↔ α(i,X)) solving
the problem of not having α(i,X) in the language by use of the auxiliary
variable Z. More precisely, we think of Z as a list of strings Z[0], Z[1], . . . ,
where the strings from index ℓ onwards are the scratch pad needed.

More precisely, it is stated that the strings Z[ℓ+i], for 0 ≤ i < n have the
shape

. . . 0001 [i]
︸︷︷︸

log(n)

[X]
︸︷︷︸

n

so that α(Z[ℓ+i]) translates to αn+log(n)(i, p
X
n−1 . . . p

X
0 ) as desired. To have the

binary coding of i, easily available, the last to closes state that (the last n
bits of) Z[ℓ+n+i] code the number i.

Lemma 7.1.7. The quantified propositional formulae

‖∃Z < 〈ℓ+ 2n; 2n〉“f(Y ) =(ℓ,Z) X ”‖n,n

and
“f(pY

n−1 . . . p
Y
0 ) = pX

n−1 . . . p
X
0 ”
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7 THE SEQUENTIAL STRENGTH OF THEORIES

are logically equivalent. Moreover, this equivalence is witnessed by a polyno-
mial (in n) size AC0-Tait proof of constant height.

Proof. Tedious, but elementary. Compare the remarks in the proof of Lemma
7.1.4. Remark 7.1.6 explains how the helper variables are to be interpreted.
Note that the “counting to n” is not a problem, as all the formulae involved
there are quantifier free, so the multi-cut rules saves the day (recalling that
resolution is complete).

As mentioned, we are interested in growth rates in the range O(1) to 2n.
To speak about these growth rate within a theory, we take number variables
as input and produce a sequence of bits as output. Recall Definition 2.1.38
that shows how we identify strings with (exponentially large) numbers.

Definition 7.1.8 (String Function). A string function Fn(i) is a ∆B
0 -formula

with two distinguished variables n, thought of as the input, and i.
A string function Fn(·) denotes the function

N → {0, 1}∗

n 7→ (Fn(n−1))N . . . (Fn(0))N ∈ {0, 1}n .

Definition 7.1.9 (Arithmetical Iteration Formula). If Fn(·) is a string func-
tion, the arithmetical iteration formula ΦF·(·) is the formula

ΦFn(·)(X,X
′,Y,Y′) ≡

∃Z<〈2 + 2 · n;n〉[
((∀i < n.Y(i) ↔ Fn(i)) ∧ “fY(0) =(Z[0]) X ”)

∨ ¬“f 0(0) =(Z[0]) 0 ”
∨ ( “Y′ = Y + 1” ∧ “fY(0) =(Z[0]) X ”∧

“f(X′ ) =(2,Z) X ” ∧ ¬“fY′

(0) =(Z[1]) X′ ”) ]

The arithmetical iteration principle for F·(·) is the formula

∃XX′YY′ < n+1 ΦFn(·)(X,X
′,Y,Y′)

Lemma 7.1.10. The quantified propositional formulae

‖∃X<n+1∃X′<n+1∃Y<n+1∃Y′<n+1ΦFn(·)(X,X
′,Y,Y′)‖

and
∃4n~p~p

′~q~q ′. Φn,(Fn(·))N(~p, ~p ′, ~q, ~q ′) .

are logically equivalent and the equivalence is witnessed by a polynomial (in
n) size AC0-Tait proof of constant height.

Here Φn,ℓ is the iteration formula introduced in Definition 4.2.4 and (Fn(·))N

is the function denoted by F·(·) at the value n.
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Proof. Tedious, but elementary. Builds on the proofs constructed in Lem-
mata 7.1.4 and 7.1.7.

Definition 7.1.11 (The Sequential Strength seq(T ) of a Theory T ). If T is
a theory in L2(α), we define

seq(T ) = {f : N → N | there is some string function Fn(·)
such that f ≤e (Fn(·))N and
T ⊢ ∃XX′YY′ < n+1 ΦFn(·)(X,X

′,Y,Y′) }

that is the set of all functions that are eventually dominated by some string
function for which T proves the arithmetical iteration principle.

7.2 The Sequential Strength of V 0(α)

The theory V 0(α) is the basis for all the theories under consideration, that is,
all these theories are extensions of V 0(α). In particular, as they prove more
theorems, their sequential strength exceeds that of V 0(α). So the sequential
strength of V 0(α) is the natural lower bound down to which our method
yields useful results. Fortunately it is O(1).

Theorem 7.2.1. seq(V 0(α)) = O(1)

Proof. Arguing informally in V 0(α) it is easy to show that the function given
by an oracle can be iterated a constant number of times. This shows the lower
bound.

As for the upper bound of the sequential strength, assume a V 0(α) proof
of the sequential iteration principle. By Corollary 6.2.10 this translates to a
constant height AC0-Tait proof of a formula which, by Lemma 7.1.10, is equiv-
alent to the with the n, f(n)-iteration principle introduced in Definition 4.2.4.
Here f is the function denoted by F·(·).

Since the equivalence is witnessed by a constant height proof and since
the formulae involved are Σq

1-formulae we can appeal to Corollary 3.4.7 and
obtain a constant height proof of the n, f(n)-iteration principle, which has
still polynomial width. Therefore, Corollary 4.2.18 shows that f is bounded
by a constant. This finishes the proof.

7.3 The Sequential Strength of VNL(α)

Theorem 7.3.1. seq(VNL(α)) = O(1)
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Proof. Since VNL(α) extends V 0(α) it is easy to show, that the function
given by the oracle can be iterated a constant number of times, hence the
lower bound.

For the upper bound a assume a VNL(α) proof of the sequential iteration
principle. By Lemma 6.4.5 this translates into a family of constant height
AC⋆-proofs of a formula which, by Lemma 7.1.10, is equivalent to the with
the n, f(n)-iteration principle introduced in Definition 4.2.4. Here f is the
function denoted by F·(·).

Since the equivalence is witnessed by a constant height proof and since
the formulae involved are Σq

1-formulae we can appeal to Corollary 4.4.4 and
obtain a constant height proof of the n, f(n)-iteration principle, which has
still polynomial width. Therefore, Corollary 4.4.6 shows that f is bounded
by a constant. This finishes the proof.

Corollary 7.3.2. seq(VL(α)) = O(1)

Proof. Immediate from Theorems 7.2.1 and 7.3.1, since V 0(α) ⊆ VL(α) ⊆
VNL(α).

It seems a bit disappointing that our new measure fails to separate the
theories for AC0(α) and NLα. Note, however, that these complexity classes
have complete problems that are not relativised. In other words, the axioma-
tisations of our theories between V 0(α) and VNL(α) only differ in the unrel-
ativised parts. In particular, any separation would also separate the corre-
sponding unrelativised theories. Moreover, as the ΣB

1 -definable functions are
precisely the corresponding unrelativised complexity classes [14, 20], a sepa-
ration at the ΣB

1 -level would even unconditionally separate the corresponding
complexity classes. It is worth noting, that our arithmetical strength measure
introduced in Definition 7.1.11 is entirely based on the ΣB

1 (α)-consequences
of the theory in question.

A separation of AC0 from L is known, since AC0 cannot compute par-
ity [24]. However, it is still an open problem whether AC0(6) is separated
from polynomial time. This open problem is, unfortunately, not solved in
this thesis either.

Nevertheless, the author believes that Theorem 7.3.1 still has something
to say. Recall the tight correspondence between sequential iteration and par-
allel time, as measured by circuit height (Lemma 4.3.3 and Theorem 4.3.9).
Keeping this correspondence in mind, one can rephrase Theorem 7.3.1 as
“Whatever the difference between AC0 and NL is, it has nothing to do with
the ability of doing more computations in sequence”.
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7.4 The Sequential Strength of V i/j(α)

Theorem 7.4.1. seq(V i/j(α)) ⊂ 2i(O(logj+1))

Proof. Assume a V i/j(α) proof of the sequential iteration principle. By Corol-
lary 6.3.4 this translates to an AC0-Tait proof with Σq

i (α)-cuts of height
O(logj+1), again of a formula which, by Lemma 7.1.10, is equivalent to the
with the n, f(n)-iteration principle introduced in Definition 4.2.4. Here f is
the function denoted by F·(·).

Using cut-elimination provided by Proposition 3.4.10, we get a cut-free
AC0-Tait proof of height 2i(O(logj+1)).

Since the equivalence of the proved formula and the n, f(n)-iteration prin-
ciple is witnessed by a constant height proof and since the formulae involved
are Σq

1-formulae we can appeal to Corollary 3.4.7 and obtain proof of height
2i(O(logj+1)) of the n, f(n)-iteration principle, which has still polynomial
width. Therefore, Corollary 4.2.18 shows that f ∈ 2i(O(logj+1)). This fin-
ishes the proof.

It should be noted that, even though true for general i and j, Theo-
rem 7.4.1 yields non-trivial results only for j+2 > i, for otherwise the trivial
2n bound is more strict.

We will now show that the bound in Theorem 7.4.1 in tight in the cases
where 2i(O(logj+1)) is eventually dominated by 2n. To avoid technical com-
plication we presuppose an underlying size parameter n (in the form of a free
variable) and we tacitly assume all occurring numbers to be bound by 2n.
Of course, such large numbers are represented as strings.

Moreover, we write unbounded string quantifiers as a shorthand for string
quantifiers with length bounded by n. To avoid ambiguities we hereby adopt
the convention that the rest of this subsection does not use any unbounded
string quantifiers. As a matter of fact, it does not use any unbounded number
quantifiers either.

Exponentiation 2X can be defined as a string function by stating that the
i’th bit of 2X is set if and only if X represents i. The latter is the case, if, for
all j, the j’th bit of i is set in the sense of BIT(i, j), see Definition 5.4.28,
if and only if X(j). As is well-known [24], multiplication X · Y in not in
AC0 and hence not first-order definable (in a bounded setting). Fortunately,
being a simple polynomial-time computation, it is definable as a ∆B

1 -formula
over any theory providing ΣB

1 -induction up to X. In fact, the pair of formu-
lae can be chosen independent of the theory. As we will use multiplication
only in situations where the first factor is small enough that it could be
a number we define multiplication by the ∆B

1 -formula formalising repeated
addition. In this way, the defining equations of multiplication easily follow

109



7 THE SEQUENTIAL STRENGTH OF THEORIES

from the definition, even over V 0(α). As all formulae using multiplication
will be of logical complexity ΣB

1 or higher, substituting in multiplication as
a ∆B

1 -formula doesn’t increase the logical complexity, as has been shown in
Lemma 5.1.32. For X a string variable and C > 0 a natural number (on the
meta-level) we use XC as a shorthand for X ·(X ·(. . .·(X ·X))), with C factors,
parenthesised to the right.

When arguing informally in theories we are quite lax about arithmetical
relations (like associativity of string addition and the laws of exponentia-
tion to base two). This is justified as all our theories extend V 0. A reader
feeling uncomfortable with lax treatment should note that all the needed
arithmetical properties do not refer to the oracle α. Therefore, they can
safely be added as additional axioms; as seen in Section 6.4, unrelativised
computations don’t affect the upper bound on sequential iteration.

Definition 7.4.2 (Inductive Formula). Let ϕ(X) be a formula with a dis-
tinguished string variable X and possibly other free variables. We call ϕ(X)
inductive if ϕ(0) and ∀X(ϕ(X) → ϕ(X + 1)) hold; ϕ(X) is inductive in some
theory, if that theory proves these properties.

Following an idea by Gentzen [27] we show how induction on more com-
plicated formulae can be used to induct a longer distance.

Definition 7.4.3 (Jump ϕ′(X) of a formula). Let ϕ(X) be a formula with
a distinguished free variable X and possibly other free variables. We define
the jump ϕ′ of ϕ to be the formula

ϕ′(Y) = ∀X[ϕ(X) → ϕ(X + 2Y)]

Remark 7.4.4. Immediately from Definition 7.4.3 we note that ϕ′ is ΠB
i+1(α)

if ϕ is ΠB
i (α) or ΣB

i (α).

Lemma 7.4.5. As a theorem of V 0, if ϕ is inductive, then so is ϕ′.

Proof. Since ϕ is inductive, we have that ∀X(ϕ(X) → ϕ(X + 1)) which, by
arithmetic, amounts to ∀X(ϕ(X) → ϕ(X + 20)). Hence ϕ′(0).

We now show that ϕ′(Y) implies ϕ′(Y + 1). So let Y be arbitrary and
assume ϕ′(Y). We have to show ϕ′(Y + 1). Hence let X be arbitrary and
assume ϕ(X) in order to show ϕ(X + 2Y+1). From ϕ′(Y) and ϕ(X) we get
ϕ(X+ 2Y). Using ϕ′(Y) again, this time instantiation the outermost quanti-
fier by X+2Y, and using the just obtained ϕ(X+2Y) we get ϕ((X+2Y)+2Y)
which, by arithmetic, shows the claim.

Proposition 7.4.6. Let ϕ be inductive. Then, as a theorem of V 0, the
statement ϕ′(n) implies ϕ(2n).
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Proof. Instantiating the outermost quantifier in ϕ′(n) by 0 we obtain ϕ(0) →
ϕ(2n). Since ϕ is inductive we know ϕ(0). Hence the claim.

Inspecting Theorem 7.4.1 we note that the important difference between
theories like V i/j(α) and V i+1/j+1(α) is the place where the constant (of the
O-notation) appears. By looking at the proof of Theorem 6.3.3 we note that
the constant essentially arises as the number of nested inductions.

So, in order to exactly match the upper bound, we have to construct
a proof by induction on the constant. This will be provided by the meta-
induction in the next lemma.

Lemma 7.4.7. Consider a theory that proves ΠB
i (α)-induction up to N . Let

ϕ(X) be ΠB
i (α), and C > 0 a natural number. Then the following is a theorem

of that theory.
Assume that ϕ(X) is inductive. Then ϕ(NC).

Proof. We argue by (meta) induction on C. If C = 1 the claim follows
immediately from the induction principle. So let C > 1 and argue informally
in the theory.

Let ψ(X) be the formula

ψ(X) ≡ ϕ(N · X)

for which we show that it is inductive. Note that is has the same logical
complexity as ϕ. Hence the meta-induction hypothesis provides us with
ψ(NC), that is ϕ(NC+1). Hence the claim.

Since ϕ is inductive, we have ϕ(0) which is the same as ψ(0).
Finally we have to show that ψ(X) implies ψ(X+1). So assume ψ(X). We

have to show that ψ(X + 1) holds. To do so, we show by induction on i that
ϕ(X ·N + i) holds. Since our induction goes till N we then get ϕ(X ·N +N),
hence the claim. ϕ(X · N + 0) holds by our assumption ψ(X). Moreover,
since ϕ is inductive ϕ(X ·N + i) implies ϕ(X ·N + i+ 1). This finishes the
proof.

Theorem 7.4.8. Let ϕ be inductive and ΣB
i (α). Let k ≥ 0 and C > 0 be a

natural numbers. Then ΣB
i+k(α)-induction up to N implies

ϕ(2k(N
C))

Note that this in particular implies that for ϕ a ΣB
1 (α)-formula and i > 0

it is the case that V i/j(α) proves ϕ(2i−1([logj(n)]C)) where n is a free number
variable that, as usual, serves as a size parameter. Since 2i−1([logj(n)]C) has
the same growth rate as

2i(C · logj+1(n))

this matches the upper bound (for iteration as a ΣB
1 (α)-principle).
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7 THE SEQUENTIAL STRENGTH OF THEORIES

Proof. We first show how the last claim can be obtained from the previous
ones. Recall that V i/j(α) provides ΠB

i (α) induction up to logj(n). So the
first claim asserts that V i/j(α) proves ϕ(2i−1((logj n)C)). Using that 2log and
the identity have the same growth rate, the argument has the growth rate
2i(log([logj(n)]C)) = 2i(C · logj+1(n)).

So, let’s show the main claim. If ϕ is ΣB
i (α) then iterated use of Re-

mark 7.4.4 shows that the k-fold jump ϕ(k) is ΠB
i+k(α) for k ≥ 1 and ΣB

i (α)
for k = 0. In any case we can do induction on ϕ(k), using Proposition 5.5.8.

So by Lemma 7.4.7 we obtain ϕ(k)(NC) and therefore, by Lemma 7.4.6,
we get ϕ(2k(N

C)) as desired.

Corollary 7.4.9. Let i, j ∈ N be natural numbers and j + 2 > i. Then

seq(V i/j(α)) = 2i(O(logj+1))

Proof. The upper bound is provided by Theorem 7.4.1 The lower bound is
provided by Theorem 7.4.8, noting that the arithmetical iteration formula is
ΣB

1 (α) and, over V 0, inductive.

The separation of theories obtained in this way holds for arbitrary large
j, giving a strict hierarchy of theories with less and less induction. This
is possible as V 0(α) proofs translate to constant height proofs; there is no
“ground noise” due to the method. This is different from dynamical ordinal
analysis [7], where the need for complete cut-elimination gives rise to a poly-
nomial (i.e., poly-logarithmic in the value) height increase due to first-order
(i.e., sharply bounded) cut-elimination.

7.5 Back to the Beginning: Circuits Again

There is one class of arithmetical theories in the literature not yet discussed
in this thesis. The reason is that we, implicitly, used these theories as calibra-
tion standard for our strength measure. These are theories that axiomatise,
over the base theory V 0(α), that circuits of a certain shape can be evaluated.
More precisely, the axiomatisation is, over V 0(α) equivalent to saying that
for all circuits obeying a certain shape restriction (in the underlying size pa-
rameter in the form of a free number variable), the circuit-evaluation formula
(Definition 4.3.1) holds true.

Most prominently, the theories VACk(α) axiomatise [4, 46] that this is the
case for relativised ACk(α)-circuits, as defined in Definition 2.4.5. Circuits
with unbounded fan-in are, as shown in Section 4.3, in one-to-one corre-
spondence with proof heights in propositional logic. Therefore (using our
results about V 0(α) as given) we immediately that seq(VACk(α)) = O(logk),
confirming again our intuitive understanding of the sequential strength.
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8 Conclusions and Future Work

In this thesis, we have studied various aspects computation relative to an
oracle. A main focus was con complexity classes within Polynomial Time.

First, we have introduced relativised versions of the complexity classes L,
NL, ACk, and NCk in such a way that all the known inclusions and closure
properties are preserved. Besides closure under composition, this includes rel-
ativised versions of Immerman-Szelepcseényi’s and Savitch’s theorem. Such
definitions did not exist in the literature before.

We have identified iteration as a suitable principle to characterise a notion
of “parallel time” for relativised computation. For Boolean circuits, the
amount of iteration that can be carried out by a circuit is precisely the
height of that circuit—and for circuits, height is the agreed notion of time.
The principle, however is a computational task that can be posed to any
model of computation that has access to an oracle. So we have obtained a
means to, in a sensible way, speak of “time” for a relativised computational
complexity class—no matter how it is defined. It need not even be defined
by a machine model.

We have then introduced formal theories in the style of Bounded Arith-
metic, that correspond to the relativised complexity classes studied. The
correspondence is a very tight one, in several ways. On the one hand, the
defining axioms (over our weak base theory V 0(α)) are precisely the state-
ments that the complete problems for the complexity classes in question have
a solution. This has the consequence that the provably recursive functions of
that theory are precisely those that belong to the corresponding relativised
complexity class. These results have been first presented in a joint article [4]
with Stephen Cook and Phuong Nguyen. We have also included the theo-
ries V i/j(α) that recast in the two-sorted settings the theories of Bounded
Arithmetic that are based on restricted induction.

Based on the above results, we have devised a taxonomy for weak formal
theories, like the ones we have developed for the complexity classes studied.
The measure was again the iteration principle. Note that “iterating a func-
tion” is a concept abstract enough so that we can formulate it first-order
logic, provided a bit of coding is available. Basing our investigations on the
iteration principles allowed us to use all our previous results; in particular,
our measure is well calibrated. For theories based on the Boolean-circuit
complexity classes we obtain their height as “sequential strength”. For ex-
ample, the sequential strength of VACk(α) is the set of functions O(logk). In
particular, the theories for relativised Boolean circuits are completely sepa-
rated. So we obtain a complete picture down to the level of AC0(α). The
only related measure that existed before, Arnold Beckmann’s “dynamic or-
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dinal” [7], could not look within the complexity class polynomial time. This
is due to the need of a complete cut-elimination which creates a polynomial
overhead—and thus dominates, and therefore hides, all smaller effects. But
the sequential strengths is not merely a new, more expressive measure. It also
properly extends the dynamic ordinal. Wherever the dynamic ordinal gives
“proper” results, i.e., results that are not an artefact to the definition—or in
other words, for all theories where matching lower bounds exists—both mea-
sures yield the same growth rate. This extra awareness, and the fact that the
growth rate obtained for theories as a clear computational meaning in terms
of Boolean circuits, makes it potentially useful for classifying mathematical
arguments according to their computational strengths. In a recent program
known as “low-level reverse mathematics” [46] for mathematical statements,
like a discrete version of the Jordan curve theorem [47], the minimal theory
is identified that is able to prove this principle.

On the way to the results on iteration, a lot of propositional logic had to
be developed. All the bound presented are obtained from bounds in proposi-
tional logic after a suitable translation and appropriate cut-elimination. For
this approach to work out, it was necessary to develop a calculus AC0-Tait
for propositional logic relative to an oracle, a concept new to the literature.
Moreover, the calculus is designed in such a way, that the height of deriva-
tions in this calculus has an intimate connection to Boolean circuits. As such
a calculus seemed of independent interest it has first been presented in a joint
article [2] with Arnold Beckmann.

Even though this thesis gives satisfying answers to many questions, some
directions are still open for future research. The most prominent is that of
the need of relativisation. All our results refer to computation relative to
an oracle. Moreover, since unrelativised computation can be proved to exist
with constant height derivations, it seems that relativisation is essential for
our method. On the other hand, that situation is similar to the situation in
traditional proof-theory after an ordinal-analysis: for a theory, the provable
total well-orders have been determined, and being a well-order is an inher-
ently second-order concept. Nevertheless, such a proof-theoretic analysis was
often only the first and key step towards meaningful unprovable statements
in the language of arithmetic. Goodstein [28] obtained such a statement by
coding appropriate fundamental sequences for the hard ordinal notation sys-
tem arithmetically. This obviously is a quite general method. More indirect
methods [49] identify hard combinatorial principles like finite versions of the
Ramsey Theorem. The latter is also an active area of investigation [36] in
Bounded Arithmetic—however, again in a relativised setting. Even though
Ramsey’s principle, speaking of a graph and a partition of that graph, can be
formalised in Bounded Arithmetic, using the oracle to describe the partition
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allows to speak about bigger graphs and partitions thereof. Unfortunately,
this extra size is needed to get unprovability results at all.

A different approach that is currently being investigated in the context of
propositional proof complexity [37, 38] is that of proof complexity generators.
Recall the way we used the oracle in our iteration principle. It essentially
served as a hard-to-predict function. The idea now is to investigate if a
more explicitly given function, like a pseudo random number generator, can
be still hard enough to predict—at least under some plausible assumptions.
But since the setting in which proof complexity generators are usually studied
is slightly different, a detailed comparison is still to be carried out.

Finally, it should be noted, there is some benefit in applying the proof-
theoretic method directly to unrelativised theories, i.e., useful results can
be obtained by propositional translation and cut-elimination of theories not
mentioning an uninterpreted predicate. In a recent joint article [3] it was
used to reobtain in a uniform way the known characterisations [10, 11, 35] of
the total relations of Si

2 definable by Σb
i−1-formulae, Σb

i -formulae, and Σb
i+1-

formulae.
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of a circuit, 14
of a propositional formula, 33

parameter, 11
sized

set, 11

slim
for AC0-Tait proofs, 40

strength
sequential strength

of a theory, 107

strengthening
in AC0-Tait with C-cuts, 41

string, 10
extensionality axiom, 73

function, 106

substitution
atomic substitution, 35

in AC0-Tait, 40
in arithmetic, 68–69
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target formula, 36
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of L2(α), 65

translation
propositional translation, 87–89

two-sorted predicate logic, 70

uniformity
first-oder uniformity, 20
notion of uniformity, 19

upper bound
circuit evaluation, 57

V 0(α), 73

V i/j(α), 84

valuation, 51
variable

assignment, 14

variables
eigenvariables, 36

extension variables, 38

VL(α), 77

VNL(α), 77

weakening
in AC0-Tait, 39

with C-cuts, 40
width

of an oracle gate, 14

of the extension rule, 38

of the multi-cut rule, 38
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