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Abstract

Using appropriate notation systems for proofs, cut-
reduction can often be rendered feasible on these notations.
Explicit bounds can be given. Developing a suitable no-
tation system for Bounded Arithmetic, and applying these
bounds, all the known results on definable functions of cer-
tain such theories can be reobtained in a uniform way.

1 Introduction

Since Gentzen’s invention of the “Logik Kalkül” LK and
his proof of the “Hauptsatz” [10, 11], cut-elimination has
been a topic of almost any paper on proof theory. Mints’
invention of continuous normalisation [14, 13] isolates op-
erational aspects of normalisation, that is the manipulations
on (infinitary) propositional derivations. These operational
aspects are described independently of the system’s proof
theoretic complexity, but at the expense of introducing the
void logical rule of “repetition” to balance derivation trees.
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Note that this rule is both logically valid and preserves the
sub-formula property. In this article, we re-examine this
situation.

Recall that derivations are often displayed as explicitly
given trees where nodes are labelled with information about
the inference which happens at this node. E.g., for LK,
nodes are labelled by sequents together with names for rules
which produce them from their children nodes. Assertions
about size or height often refer to these explicit proof trees.
On the other hand, in proof theory, derivation are often
studied via names, that is, implicit descriptions of (infinite)
propositional proofs. A proof notation system is a set (of
proof terms) which is equipped with some functions, most
prominently a function computing the last inference of a
proof named by some notation, and a function that, given

a notation h and a natural number i computes some nota-
tion for the i’th subproof of the derivation named by h. So
a proof notation completely determines an explicit proposi-
tional derivation tree; the tree can be reconstructed by ex-
ploring it from its root and determining the inference at each
node of the tree.

The cut-reduction operator can be defined on the names
for derivation trees. Using continuous cut-elimination,
these transformations will be particularly simple on the
names; note that, using names, for derivations it makes
sense to ask about the complexity of getting the i’th sub-
derivation, or about the size of the name, even if it denotes
an infinite object. We follow Buchholz’ approach [5, 6].

We will show that the cut-reduction operator of proof
notations can be understood as a polynomial time operation.
In particular, we show (in Corollary 6.6) that the size of
the notation for the k-times cut-reduced proof grows only
(k−1) times exponentially in the height of original proof.

In the second part of this article we apply these bounds to
Bounded Arithmetic. Bounded Arithmetic has been intro-
duced by Buss [7] as first-order theories of arithmetic with a
strong connection to computational complexity. These the-
ories can be given as restrictions of Peano Arithmetic in a
suitable language. The restrictions of Peano Arithmetic in
Si

2 are twofold. First, only logarithmic induction is consid-
ered

ϕ(0) ∧ (∀x)(ϕ(x) → ϕ(x+ 1)) → (∀x)ϕ(|x|)

where |x| denotes the length of the binary representation of
the natural number x. Secondly, the properties, which can
be inducted on, must be described by a Σb

i -formula.
An important goal in Bounded Arithmetic is to give good

descriptions of the functions that are definable in a certain
theory by a certain class of formulae. Buss [7] has char-
acterised the Σb

i -definable functions of Si
2 as FPΣp

i−1 , the
i-th level of the polynomial time hierarchy of functions.
Krajı́ček [12] has characterised the Σb

i+1-definable multi-
functions of Si

2 as the class FPΣp
i [wit,O(log n)] of multi-



functions which can be computed in polynomial time us-
ing a witness oracle from Σp

i , where the number of oracle
queries is restricted to O(log n) many (n being the length
of the input). Buss and Krajı́ček [9] have characterised the
Σb

i−1-definable multi-functions of Si
2 as projections of solu-

tions to problems from PLSΣp
i−2 , which is the class of poly-

nomial local search problems relativised to Σp
i−2-oracles.

We will re-obtain all these definability characterisations
by a uniform method, using the results from the first part
of this article. Thus, the potential thereof is that it might
lead to characterisations of so far uncharacterised definable
search problems.

To do so, we will first define a suitable notation system
HBA for propositional derivations which are obtained by
translating [18, 15] Bounded Arithmetic proofs. Applying
the machinery of the first part, we obtain a notation system
CHBA of cut-elimination for HBA. It will have the prop-
erty that its implicit descriptions, most notably the functions
mentioned above, will be polynomial time computable. Us-
ing this device we formulate a general local search problem
on CHBA which is suitable to characterise definable multi-
functions for Bounded Arithmetic. A more detailled work
out of the notation system for Bounded Arithmetic, includ-
ing full proofs, can be found in a technical report [1].

Other research related to our investigations is an arti-
cle by Buss [8] which also makes use of the same propo-
sitional translation to obtain witnessing results by giving
uniform descriptions of translated proofs; however, his ap-
proach does not explicitely involve cut-elimination. Fur-
thermore, dynamic ordinal analysis [3, 4] has been the main
source of inspiration for the authors for discovering the
new uniform proofs of characterisations of definable multi-
functions based on search path through cut-reduced deriva-
tion trees. The connection is that dynamic ordinals charac-
terise the heights of cut-reduced derivation trees and thus
the length of such search paths.

This article is organised as follows. In Sections 2, 3,
and 4 we repeat the definition of notation systems for for-
mulae and proofs, and cut-reduction on them. This ap-
proach is well-known for infinitary propositional logic, the
only slight modification is that we explicitly handle inten-
sional equality. The main purpose of this revision is to fix
notation and to make the article self-contained. Sections 5
and 6 contain a main technical part of this article. We prove
bounds on the size of notations that occur while explor-
ing a cut-eliminated proof. To do so, we consider a term-
rewriting system that captures the essential properties of
how the cut-reduction operators behave on proof notations
when stepping down to a subderivation. Then we prove size
bounds using standard term writing methods. Our results, in
particular, imply that the size of the notation for the k-times
cut-reduced proof grows only (k−1) times exponentially in
the height of original proof.

The second part of this article is concerned with appli-
cations to Bounded Arithmetic. We characterise the defin-
able functions of various Bounded Arithmetic theories. This
forms a novel part of the present investigations. In Section 7
we introduce Bounded Arithmetic. Section 8 defines a no-
tation system for Bounded Arithmetic, and Section 9 then
a new characterisation of definable functions in Bounded
Arithmetic. The advantage of this approach is its unifor-
mity. All the characterisations are obtained by the same pro-
cess (akin to that of ordinal analysis) of translating proofs
into propositional logic, doing cut-elimination there, and fi-
nally “reading off” the correct function class. In that way,
determining a class of definable functions has the feeling
of doing a “computation”, in the sense of mechanically fol-
lowing a recipe. This differs from other approaches in the
literature, where the correct function class just comes out of
nowhere.

2 Proof Systems

Following Buchholz [6], we present a generic concept of
a (Tait style) proof system. A proof system essentially is
a set of rules that tells how to derive finite sets of formu-
lae; these finite sets of formulae (“sequents”) are to be read
disjunctively.

Even in the generic setting, we want an abstract notion of
cut-rank. Therefore, we require our formulae to come with
some structure, including a notion of rank. As our main ex-
ample in mind is infinitary propositional logic, we take for-
mulae as a quite abstract notation system—otherwise com-
plexity issues would be hard to define in the presence of
infinite objects. As equality for infinite objects usually is
undecidable, we require formulae to come with an inten-
sional equality, i.e., we want to know when two formulae
are given to us as the same object.

Definition 2.1 (Notation System for Formulae). A notation
system for formulae is a triple 〈F ,≈, rk〉 where F is a set
(of formulae), ≈ a binary relation on F (identity between
formulae), and rk : P(F)×F → N a function (rank).

Let S be a set. The set of all subsets of S will be denoted
by P(S), the set of all finite subsets of S will be denoted by
Pfin(S).

Definition 2.2 (Sequent). A sequent over 〈F ,≈, rk〉 is a
finite subset of F . We use Γ,∆, . . . as syntactic vari-
ables to denote sequents. With ≈∆ we denote the set
{A ∈ F : (∃B ∈ ∆)A ≈ B}.

We usually write A1, . . . , An for {A1, . . . , An} and
A,Γ,∆ for {A} ∪ Γ ∪ ∆, etc. We always write C-rk(A)
instead of rk(C, A).

Definition 2.3. A proof system S over 〈F ,≈, rk〉 is given
by a set of formal expressions called inference symbols



(syntactic variable I), and for each inference symbol I an
ordinal |I| ≤ ω, a sequent ∆(I) and a family of sequents
(∆ι(I))ι<|I|.

Proof systems may have inference symbols of the form
CutC for C ∈ F ; these are called “cut inference symbols”
and their use will (in Definition 2.5) be measured by the
C-cut rank.

Notation 2.4. By writing
. . .∆ι . . . (ι < I)

(I)
∆

we de-

clare I as an inference symbol with |I| = I , ∆(I) = ∆,

∆ι(I) = ∆ι. If |I| = n we write
∆0 ∆1 . . . ∆n−1

∆
instead of

. . .∆ι . . . (ι < I)
∆

.

Definition 2.5 (Inductive definition of S-quasi derivations).
If I is an inference symbol of S, and (dι)ι<|I| is a sequence
of S-quasi derivations, then d := I(dι)ι<|I| is an S-quasi
derivation with endsequent

Γ(d) := ∆(I) ∪
⋃

ι<|I|

(Γ(dι) \ ≈∆ι(I)) ,

last inference last(d) := I, subderivations d(ι) := dι for
ι < |I|, height

hgt(d) := sup {hgt(dι) + 1: ι < |I|} ,

size (provided S has inference symbols of finite arity only)

sz(d) := (
∑
ι<|I|

sz(dι)) + 1 ,

and cut rank

C-crk(d) := sup({C-rk(I)} ∪ {C-crk(dι) : ι < |I|}) .

Here we define the cut-rank of I to be C-rk(C) + 1 if I is
of the form I = CutC , and 0 otherwise.

Remark 2.6. The reason why the notion introduced in Def-
inition 2.5 is called “quasi derivation”, rather than “deriva-
tion” is that some proof systems might require additional
constraints for a proof to be correct. Most prominently,
formal systems of (Bounded) Arithmetic might require an
Eigenvariable condition, see Definition 8.2.

However, most of this article is concerned with proposi-
tional logic, where derivations and quasi derivations coin-
cide.

3 Propositional Logic

The most prominent logic proof systems are designed for
is propositional logic. It is standard proof-theoretical prac-
tise to translate more complicated systems, like arithmetic,

into propositional logic, using infinitary rules, like Schütte’s
ω-rule [17].

Formulae of propositional logic are built from true and
false by ω-branching conjunctions and disjunctions. To al-
low to reasonably speak about effectiveness and complexity
we consider (as we did already in Section 2) abstract nota-
tions for formulae; in Section 4 we will consider notations
for derivations as well. A notation for a propositional for-
mula essentially is anything which allows to compute the
outermost connective and notations of subformulae.

The logical rules associated with infinitary propositional
logic are the obvious ones, i.e., to derive a disjunction, it
suffice to derive on disjunct, and to derive a conjunction, all
the (infinitely many) conjuncts have to be derived.

Definition 3.1. A notation system 〈F , tp, ·[·],¬, rk,≈〉 for
(infinitary) propositional formulae is a notation system
〈F ,≈, rk〉 for formulae together with functions tp: F →
{>,⊥,

∧
,
∨
}, ·[·] : F × N → F , and ¬ : F → F , called

outermost connective, sub-formula, and negation, respec-
tively, such that tp(¬(f)) = ¬(tp(f)), ¬(f)[n] = ¬(f [n]),
C-rk(f) = C-rk(¬f), C-rk(f [n]) < C-rk(f) for n <
| tp(f)|, and f ≈ g implies tp(f) = tp(g), f [n] ≈ g[n],
¬(f) ≈ ¬(g) and C-rk(f) = C-rk(g).

Here, negation of the connectives is defined in the obvi-
ous way, i.e., ¬> = ⊥, ¬⊥ = >, ¬

∧
=

∨
, and ¬

∨
=

∧
.

It should be noted that if F is a notation system for for-
mulae, then so is F/ ≈ in the obvious way; moreover, in
F/ ≈ the intensional equality is true equality in the quo-
tient. The reason why we nevertheless explicitly consider
an (intensional) equality relation is that we are interested
in the computational complexity of notation systems and
therefore prefer to take notations as the strings that arise
naturally, rather than working on the quotient. This will
simplify the notation system introduced in Section 8.

Definition 3.2. Let F = 〈F , tp, ·[·],¬, rk,≈〉 be a notation
system for infinitary propositional formulae. The proof sys-
tem SF over F is the proof system over F which is given
by the following set of inference symbols.

. . .C[n]. . . (n ∈ N)
(
∧

C)
C

C[i]
(
∨i

C)
C

(AxA)
A

C ¬C(CutC)
∅

∅(Rep)
∅

The rules AxA,
∧

C and
∨i

C require that tp(A) = >,
tp(C) =

∧
and tp(C) =

∨
, respectively.

For CutC we require tp(C) ∈ {>,
∧
}. For other C we

use CutC as an obvious abbreviation for Cut¬C with both
premises exchanged.

The SF -derivations are the SF -quasi derivations.

Later in our applications, we will be concerned only
with derivations of finite height, for which we can formu-



late slightly sharper upper bounds on cut-reduction than in
the general (infinite) case (2α versus 3α). Thus, from now
on we will restrict attention to derivations of finite height
only.

Definition 3.3. Let d `α
C,m Γ denote that d is an SF -

derivation with Γ(d) ⊆ ≈Γ, C-crk(d) ≤ m, and hgt(d) ≤
α < ω .

Let SF the propositional proof system over F . We de-
fine Mints’ continuous cut-reduction operator [14, 13] fol-
lowing the description given by Buchholz [5]. The only
modification is our explicit use of intensional equality.

Theorem 3.4 (and Definition). Let C ∈ F with tp(C) =∧
, and k < ω be given. We define an operator Ik

C such that
d `α

C,m Γ, C implies Ik
C(d) `α

C,m Γ, C[k].

Proof. We argue by the buildup of d. If last(d) ∈
{
∧

D : D ≈ C} we set

Ik
C(d) = Rep(Ik

C(d(k)))

and otherwise we set Ik
C(d) := I(Ik

C(d(i)))i<|I|.

Theorem 3.5 (and Definition). Let C ∈ F with tp(C) ∈
{>,

∧
} be given. We define an operator RC such that for

C-rk(C) ≤ m we have that d0 `α
C,m Γ, C and d1 `β

C,m

Γ,¬C imply RC(d0, d1) `α+β
C,m Γ.

Proof. We argue by induction on d1. Let I = last(d1).
If ∆(I) ∩ ≈{¬C} 6= ∅, we note that I has to be of the

form I =
∨k

D for some k ∈ N and D ≈ ¬C. So we can set

RC(d0, d1) = CutC[k](Ik
C(d0),RC(d0, d1(0))) .

Otherwise we can just set RC(d0, d1) =
I(RC(d0, d1(i)))i<|I| and obtain a derivation as de-
sired.

Theorem 3.6 (and Definition). We define an operator E
such that: d `α

C,m+1 Γ implies E(d) `2α−1
C,m Γ.

Proof. We argue by induction on the buildup of d.
If last(d) = CutC then C-rk(C) ≤ m and, without loss

of generality, tp(C) ∈ {>,
∧
}. We set

E(d) = Rep(RC(E(d(0)),E(d(k))))

which is as desired.
Otherwise we set E(d) = I(E(d(i)))i<|I|.

Immediately from the definition we note that the opera-
tors I, R, and E only inspects the last inference symbol of
a derivation to obtain the last inference symbol of the trans-
formed derivation. It should be noted that this continuity
would not be possible without the repetition rule.

4 Notations for Derivations and Cut-
Elimination

As already mentioned in the introduction to Section 3,
we’re interested in arguing about complexity of proof trans-
formations. For this question to make sense we need a finite
representation of infinite proofs. Again, we take a flexible
approach. Any form of finite notation is fine, as long as it is
easy to compute the last rule of inference and notations for
the subderivations.

Definition 4.1. Let F be a notation system for formulae,
and SF the propositional proof system over F from Defi-
nition 3.2.

A notation system H = (H, tp, ·[·],Γ, crk, o, |·|) for
SF is a set H of notations and functions tp: H → SF ,
·[·] : H×N → H, Γ: H → Pfin(F), crk: P(F)×H → N,
and o, |·| : H → N \ {0} called denoted last inference,
denoted sub-derivation, denoted end-sequent, denoted cut-
rank, denoted height and size, such that C-crk(h[n]) ≤
C-crk(h), tp(h) = CutC implies C-rk(C) < C-crk(h),
o(h[n]) < o(h) for n < | tp(h)|, and the following local
faithfulness property holds for h ∈ H:

∆(tp(h))∪
⋃

ι<| tp(h)|

(
Γ(h[ι]) \≈∆ι(tp(h)))

)
⊆ ≈Γ(h) .

The local faithfulness property suffices to ensure the fol-
lowing Proposition.

Proposition 4.2. Γ(h[j]) ⊆ ≈
(
Γ(h) ∪∆j(tp(h))

)
We now extend a notation systemH for SF to a notation

system for cut-elimination onH, by adding notations for the
operators I, R and E from the previous section.

IfH is a notation system we define a notation system CH
for cut-elimination forH by extendingH by derivations IkCh
for tp(C) =

∧
, RCh0h1 for tp(C) ∈ {>,

∧
}, and Eh; in

all these cases of this inductive definition the h, h0, h1 can
be taken from CH.

The functions tp, ·[·], Γ, crk and o are defined as to make
the new symbols I, R, and E match the operators I, R, and E,
respectively. The size |·| is defined in the obvious way, that
is, |IkCh| = |Eh| = |h|+ 1 and |RCh0h1| = |h0|+ |h1|+ 1.

It should be observed that for the computation of Γ, the
cut-elimination operators IkC , RC and E behave as if there
were the following inference symbols.

C(IkC)
C[k]

C ¬C(RC)
∅

∅(E)
∅

5 An Abstract Notion of Notation

So far, we only recalled concepts well known in the lit-
erature. Now we are interested in studying the size needed



by the notations for sub-derivations of derivations obtained
by the cut-elimination operator. To avoid losing the simple
idea in a blurb of notation, we abstract our problem to a
simple term-rewriting system.

Definition 5.1. An abstract system of proof notations is
a set D of “derivations”, together with two functions
|·|, o(·) : D → N \ {0}, called “size” and “height”, and a
relation →⊆ D×D called “reduction to a sub-derivation”,
such that d→ d′ implies o(d′) < o(d).

Observation 5.2 (and Definition). Let F be a notation sys-
tem for formulae and SF the propositional proof system
over F . A notation system H = (H, tp, ·[·],Γ, crk, o, |·|)
for SF gives rise to an abstract system of proof notations
by letting D = H and defining d → d′ iff there exists an
n < | tp(d)| with d′ = d[n].

Definition 5.3. If D is an abstract system of proof nota-
tions, then D̃, the “cut elimination closure”, is the abstract
notation system inductively defined to extendD and contain
derivations Id, Ed, and Rde for d, e ∈ D̃. Here I, E and R
are new symbols. The size is extended in the obvious way,
that is |Id| = |Ed| = 1 + |d| and |Rde| = 1 + |d| + |e|.
The height is extended following the properties of the op-
erators I, E, and R. In other words, we set o(Id) = o(d),
o(Rde) = o(d) + o(e), and o(Ed) = 2o(d) − 1.

The relation → is inductively defined as follows.

d→ d′ in D
d→ d′

d→ d′

Id→ Id′
e→ e′

Rde→ Rde′

d→ d′

Ed→ Ed′ Rde→ Id

d→ d′ d→ d′′

Ed→ R(Ed′)(Ed′′)

We immediately note hat D̃ is an abstract system of proof
notations if D is one.

Let F be a notation system for formulae, SF the propo-
sitional proof system over F , H a notation system for SF ,
CH the notation system for cut-elimination on H with de-
noted height o and size |·|, and let D be the abstract system
of proof notations associated with H according to Observa-
tion 5.2.

Definition 5.4. The abstraction h of h ∈ CH is obtained
by dropping all sub- and superscripts. We denote the set of
abstractions for h ∈ CH by CH.

The set of abstractions CH for CH is a subsystem of the
cut-elimination closure H̃ of H in the following sense. Let
→ denote the reduction to sub-derivation relation of H̃, and
define a reduction to sub-derivation relation ; of CH in the
obvious way by h ; h′ iff there exists an n < | tp(h)| with
h′ = h[n]. Then CH = H̃ and ;⊆→.

6 Size Bounds

We now prove a bound on the size of (abstract) nota-
tions for cut-elimination. By induction on the buildup of
D̃ we assign every element a measure that bounds the size
of all derivations reachable from it via iterated use of the
→-relation.

A small problem arises in the base case; if d → d′ in
D̃ because this holds in D we have no means of bounding
|d′| in terms of |d|. So we use the usual trick [2] when a
global measure is needed and assign each element d of D̃
not a natural number but a monotone function ϑ(d) such
that |d′| ≤ ϑ(d)(s) for all d →∗ d′ whenever s ∈ N is a
global bound on the size of all elements in D.

Definition 6.1. An abstract system D of proof notations is
called s-bounded (for s ∈ N), if for all d ∈ D it is the case
that |d| ≤ s.

If D is an abstract system of proof notations and d ∈ D,
then by Dd we denote the set Dd = {d′ | d →∗ d′} ⊂ D
considered an abstract system of proof notation with the
structure induced byD. Here→∗ denotes the reflexive tran-
sitive closure of →.

For D an abstract system of proof notations and d ∈ D
we say that d is s-bounded if Dd is.

Definition 6.2. For D an abstract system of proof notations
we define a size function ϑ(d) for every d ∈ D̃ as a mono-
tone function from N to N. ϑ(d) is defined by induction
on the inductive definition of D̃ as follows, where we write
ϑs(d) as an abbreviation for ϑ(d)(s).

ϑs(d) = s, provided d ∈ D
ϑs(Id) = ϑs(d) + 1

ϑs(Rde) = max{|d|+1+ϑs(e) , ϑs(d)+1}
ϑs(Ed) = o(d)(ϑs(d) + 2)

Proposition 6.3. If D is s-bounded then for every d ∈ D̃
we have |d| ≤ ϑs(d).

Theorem 6.4. If D is s-bounded, d ∈ D̃ and d → d′, then
ϑs(d) ≥ ϑs(d′).

Proof. Induction on the inductive definition of the relation
d→ d′ in D̃. If d→ d′ because it holds in D then ϑs(d) =
s = ϑs(d′).

If Ed→ R(Ed′)(Ed′′) thanks to d→ d′ and d→ d′′ we



argue as follows

ϑs(R(Ed′)(Ed′′))
= max{ |Ed′|+1+ϑs(Ed′′) ,

ϑs(Ed′)+1}
= max{ |d′|+2+o(d′′)(ϑs(d′′)+2) ,

o(d′)(ϑs(d′) + 2)}
≤ max{ ϑs(d′)+2+o(d′′)(ϑs(d′′)+2) ,

o(d′)(ϑs(d′) + 2)}
≤ max{ ϑs(d)+2+o(d′′)(ϑs(d)+2) ,

o(d′)(ϑs(d) + 2)}
≤ max{ ϑs(d)+2+(o(d)− 1)(ϑs(d)+2) ,

(o(d)− 1)(ϑs(d) + 2)}
= ϑs(d)+2+(o(d)− 1)(ϑs(d)+2)
= o(d)(ϑs(d)+2)
= ϑs(Ed)

where for the first inequality we used Proposition 6.3, for
the second the induction hypothesis, for the third that, since
d → d′ and d → d′′, both o(d′) and o(d′′) are bounded by
o(d)− 1.

If Rde→ Rde′ thanks to e→ e′, then

ϑs(Rde′)
= max{|d|+1+ϑs(e′) , ϑs(d)+1}
≤ max{|d|+1+ϑs(e) , ϑs(d)+1}
= ϑs(Rde)

where for the inequality we used the induction hypothesis.
The remaining cases are trivial.

Now we draw the desired consequences of our main the-
orem by putting things together.

Corollary 6.5. If D is s-bounded, and d ∈ D̃ then D̃d is
ϑs(d)-bounded.

Recall that iterated exponentiation 2n(x) is defined in-
ductively by setting 20(x) = x and 2n+1(x) = 22n(x). An
easy induction shows that the height o(End) of the n-times
cut-reduced derivation d is bounded by 2n(d).

Corollary 6.6. If d ∈ D is s-bounded of height o(d) = h
for s ≥ 2 and h ≥ 2, then Ek(d) is 2k−1(2 · h) · s-bounded
for all k ≥ 1.

In Corollary 6.6 one should note that the tower of ex-
ponentiations has height only k − 1. Hence there is one
exponentiation less than the height of the denoted proof.

We conclude this section by remarking that the cut-
elimination operator can be viewed as a polynomial time
computable operation. Assume we modify the size function
on D̃ to ϑ[k] by changing all ϑ to ϑ[k] and defining for the
last case to be ϑ[k](Ed)(s) = (k + 1) · (ϑ[k](d)(s) + 2).

Then we obtain as before for an s-bounded D, d ∈ D̃
and k ∈ N, that |d| ≤ ϑ[k](d)(s), and d → d′ implies

ϑ[k+1](d)(s) ≥ ϑ[k](d)(s). Hence, for d ∈ D, D s-
bounded, and Ed →k d′, we obtain |d′| ≤ ϑ[k](Ed)(s) ≤
(k + 1) · (s+ 2). From this we can conclude the following
observation, where f [i1, . . . , ik] := f [i1] . . . [ik].

Observation 6.7. The cut-reduction operator for infinitary
propositional logic is a polynomial time operation in the
following sense.

Let F and H be some notation systems for infinitary for-
mulae and the propositional system SF . Assume that F
and H are polynomial time computable, and that in addi-
tion also the functions F × N<ω → F , A, (i1, . . . , ik) 7→
A[i1, . . . , ik] and H × N<ω → H, h, (i1, . . . , ik) 7→
h[i1, . . . , ik] are polynomial time computable.

Then, CH and the function H × N<ω → CH,
h, (i1, . . . , ik) 7→ (Eh)[i1, . . . , ik] are polynomial time
computable.

7 Bounded Arithmetic

We will now apply the results on the size of proof no-
tations to Bounded Arithmetic. To keep the presentation
simple we will be quite liberal about the language and the
basic axioms.

Definition 7.1 (Language of Bounded Arithmetic). The
language LBA of Bounded Arithmetic contains as non-
logical symbols {=,≤} for the binary relation equality and
less than or equal, and a symbol for each ptime function. In
particular, it includes a unary function symbols | · | whose
interpretation in the standard model N is given by the func-
tion which computes the length of the binary representation
of its argument, and a constant ca for a ∈ N whose inter-
pretation in N is cN

a = a. We will often write n instead of
cn, and 0 for c0.

Bounded quantifiers are introduced as abbreviations.
(∀x≤ t)A is short for (∀x)Ax(min(x, t)), and (∃x≤ t)A is
short for (∃x)Ax(min(x, t)). Our introduction of bounded
quantifiers is slightly nonstandard. It has the advantage
that the usual cut-reduction procedure gives already opti-
mal results. The standard abbreviation of bounded quantifi-
cation, where e.g. (∃x ≤ t)A denotes (∃x)(x ≤ t ∧ A),
would need a modification of cut-reduction to produce op-
timal bounds, as two logical connectives are to be removed
for one bounded quantifier. Nevertheless, the two kind
of abbreviations are equivalent over a weak base theory
like BASIC, assuming BASIC includes some standard ax-
iomatisation of min using ≤, for example a ≤ b →
min(x, y) = x and min(a, b) = min(b, a).

Definition 7.2 (Bounded Formulas). The set BFOR of
bounded LBA-formulae is the set of LBA-formulae consist-
ing of literals and closed under ∧ , ∨ , (∀x≤ t), (∃x≤ t).



Negation of complex formulae is an operation on for-
mulae, according to the De Morgan laws; similarly, we use
other connectives as obvious abbreviations. For a set C of
formulas and a formula A, let the C-rank of A, C-rk(A),
be the maximal nesting of logical connectives until a sub-
formula in C is reached.

We now define a restricted (also called strict) delineation
of bounded formulae.

Definition 7.3. The set sΣb
d is the subset of bounded LBA-

formulae whose elements are of the form

(∃x1≤ t1)(∀x2≤ t2) . . . (Qxd≤ td)(Q̄xd+1≤|td+1|)A(~x)

with Q and Q̄ being of the corresponding alternating quan-
tifier shape, and A being quantifier free.

Definition 7.4. As axioms we allow all disjunctions A of
literals such that A is true in N under any assignment. Let
us denote this set of axioms by BASIC.

Definition 7.5. Let Ind(A, z, t) denote the expression

Az(0) ∧ (∀z < t)(A → Az(z + 1)) → Az(t) .

The set Φ-LmIND consists of all expressions of the form

Ind(A, z, 2||t|m|)

with A ∈ Φ, z a variable and t an LBA-term. Here | · |m
denotes the m-fold iteration of the function symbol | · |.

8 Notation systems for Bounded Arithmetic

Let FBA be the set of closed formulae in BFOR. We
define the outermost connective function on FBA to be >
or ⊥ for true or false literals, respectively,

∧
for univer-

sally quantified formulae and conjunctions, and
∨

for ex-
istentially quantified formulae and disjunctions. The sub-
formula function is defined in the obvious way, where for
finite conjunctions and disjunctions the last conjunct or dis-
junct is treated as if it were repeated infinitely often.

For t a closed term its numerical value tN ∈ N is defined
in the obvious way. Let →1

N be the compatible closure of
t 7→ tN for t a closed term. Let ≈N denote the reflexive,
symmetric and transitive closure of →1

N. If the depth of ex-
pressions is restricted, and the number of function symbols
representing polynomial time functions is also restricted to
a finite subset, then the relation ≈N is polynomial time de-
cidable.

From now on, we will assume that FBA implicitly con-
tains a constant k without explicitly mentioning it, which
bounds the above mentioned depth of expressions and in-
dices of function symbols allowed to occur. All formu-
lae and terms used in FBA are thus assumed to obey these

restriction on occurrences of function symbols and depth.
Then all relations and functions inFBA are polynomial time
computable.

Let BA∞ denote the propositional proof system over
FBA according to Definition 3.2.

Definition 8.1. The finitary proof system BA? is the proof
system over 〈BFOR,≈N, rk〉 which is given by the follow-
ing set of inference symbols.

(Ax∆) if
∨

∆ ∈ BASIC
∆

A0 A1(
∧

A0∧A1
)

A0 ∧A1

Ak(
∨k

A0∨A1
)
A0 ∨A1

Ax(y)
(
∧y

(∀x)A)
(∀x)A

Ax(t)
(
∨t

(∃x)A)
(∃x)A

¬F, Fy(y + 1)
(INDy,t

F )
¬Fy(0), Fy(2|t|)

¬F, Fy(y + 1)
(INDy,n,i

F )
¬Fy(n), Fy(n+ 2i)

C ¬C(CutC)
∅

In our finitary proof system Schütte’s ω-rule [17] is re-
placed by rules with Eigenvariable conditions. Of course,
the precise name of the Eigenvariable does not matter, as
long as it is an Eigenvariable. For this reason, we think
of the inference symbols

∧y
(∀x)A, INDy,t

F , and INDy,n,i
F in

BA?-quasi derivations as binding the variable y in the re-
spective sub-derivations. Substitution is defined according
to this intuition.

Definition 8.2 (Inductive definition of ~x : d). For ~x a finite
list of disjoint variables and d = Id0 . . . dn−1 a BA?-quasi-
derivation we inductively define the relation ~x : d that d is a
BA?-derivation with free variables among ~x as follows.

If ~x, y : h0 and I ∈ {
∧y

(∀x)A, INDy,t
F , INDy,n,i

F } for
some A,F, t, n, i, and FV(Γ(Ih0)) ⊂ {~x} then ~x : Ih0.

If ~x : h0 and FV((∃x)A),FV(t) ⊆ {~x} then
~x :

∨t
(∃x)Ah0.

If ~x : h0, ~x : h1 and FV(C) ⊆ {~x} then ~x : CutCh0h1.
If FV(∆) ⊆ {~x} then ~x : Ax∆,
If ~x : h0, ~x : h1 and I =

∧
A0∧A1

with FV(A0 ∧A1) ⊂
{~x} then ~x : Ih0h1.

If ~x : h0 and I =
∨k

A0∨A1
with FV(A0 ∨A1) ⊂ {~x}

then ~x : Ih0.
A BA?-derivation is a BA?-quasi derivation h such that

for some ~x it holds ~x : h. We call a BA?-derivation h
closed, if ∅ : h.

We note that if ~x : h then FV(Γ(h)) ⊆ {~x}. In particular
FV(Γ(h)) = ∅ for closed h.



Moreover, if ~x : h and y is a variable and t a closed
term, then ~x \ {y} : h(t/y) and moreover Γ(h(t/y)) ⊆
(Γ(h))(t/y).

Let HBA be the set of closed BA?-derivations. For each
h ∈ HBA we define the denoted last inference tp(h) and
subderivations h[j] following the obvious translation into
propositional logic, were induction up to 2i is proved by a
balanced tree of cuts of height i. The size function |·| on
HBA is given by |h| := sz(h) and the height o(h) is defined
according to the above description of a tree of balanced cuts;
to bound the length induction is carried out on, a mono-
tone polynomial bounding term for the whole derivation is
extracted first. Observe that, using the auxiliary induction
inference symbols (INDy,n,i

F ), the translation of induction
can be denoted in such a way that the size of h[i] is always
bounded by the size of h.

In this way we obtain a notation system for BA∞ in the
sense of Definition 4.1. We note that all the involved func-
tions are polynomial-time computable.

9 Computational Content of Proofs

We will now show how the results on bounding the
lengths of proof notations can be used to obtain characteri-
sations of definable functions.

Assume we have a proof of a statement (∀x)(∃y)ϕ(x, y).
For any given n ∈ N we can use inversion to get a proof of
(∃y)ϕ(n, y). The task now is to find a witnessing k for
the existential formula. After reducing the cut-rank so that
the ranks of remaining cuts match the rank of ϕ, we can
define a path d = d0, d1, d2, . . . through the derivation d
of (∃y)ϕ(n, y) such that always d`+1 = d`[i] for some i,
and Γ(d`) is of the shape Γ(d`) = (∃y)ϕ(y),Γ` where all
formulae A ∈ Γ` are false and of rank at most that of ϕ. As
d is well-founded, such a path must be finite. It is easy to
note that it has to end with a

∨k
(∃y)ϕ(y)-inference for which

ϕ(k) is true. Hence we found our witness.
Such a path can be seen as a canonical path in a local

search problem on a specific subset of BA∞ derivations.
Using notations for these proofs, the above procedure be-
comes effective and even feasible in many cases. Instantiat-
ing this general procedure by different formula complexities
and sets of proof notations we reobtain—but in a uniform
way!—characterisations of the definable functions of vari-
ous theories of Bounded Arithmetic.

Our first step in the technical development is to note
that all the formulae we deal with are bounded. In other
words, even though, say, universal formulae have infinitely
many subformulae, only finitely many carry non-trivial in-
formation. In fact, it is easy to define, for every derivation
h, monotone terms bd(h) that bounds all the indices ever
needed to access a subformula or subderivation, and ibd(h)
that bounds the length of any induction that has to be con-

sidered. We also note, that the size of the conclusion of a
derivation is polynomially (in fact, linearly) bounded in the
size of the notation of a derivation. Finally, we can com-
pute in polynomial time the list deco(h) of formulae that
decorate any inference symbol which occurs in h.

For s ∈ N a size parameter we define Hs
BA :=

{h ∈ HBA : |h| ≤ s}. Then Hs
BA is an s-bounded, ab-

stract system of proof notations, because we observe that
h ∈ HBA and h→ h′ implies |h′| ≤ |h|.

Remember that h for h ∈ CHBA denotes the abstraction
of hwhich allows us to view CHBA as a subsystem of H̃BA.
For h ∈ CHBA we define ϑ(h)(s) := ϑ(h)(s). Then The-
orem 6.4 now reads as follows. If h ∈ CHs

BA and h → h′,
then ϑ(h)(s) ≥ ϑ(h′)(s).

Definition 9.1. We define a local search problem L param-
eterised by a finite set of bounded formulae Φ ⊂ BFOR,
a “logical complexity” C given as a polynomial time decid-
able set of LBA-formulae, a size parameter s ∈ N, an initial
value function h· : N → CompHs

BA, where ha is presented
in the form E . . .Eh(a/x) for some BA?-derivation h, and
a formula (∃y)ϕ(x, y) ∈ Φ with ¬ϕ ∈ C. It will have the
property that, for every a ∈ N, Γ(ha) = {(∃y)ϕ(a, y)},
C-crk(ha) ≤ 1, o(ha) = 2|a|

O(1)
, ϑ(ha)(s) = |a|O(1), and

deco(ha) ⊆ Φa.
The set of possible solutions F (a) ∈ Pfin(CompHs

BA)
is given as the set of those h ∈ CompHs

BA which sat-
isfy Γ(h) ⊆ {(∃y)ϕ(a, y)} ∪ ∆ for some ∆ ⊆ C ∪ ¬C
such that all A ∈ ∆ are closed and false, C-crk(h) ≤ 1,
o(h) ≤ o(ha), ϑ(h)(s) ≤ ϑ(ha)(s), bd(h) ≤ bd(ha) and
ibd(h) ≤ ibd(ha), and deco(h) ⊆ Φbd(ha).

The initial value function is given by i(a) := ha. The
cost function is defined as c(a, h) := o(h). Finally, the
neighbourhood function is given by setting N(a, h) to be
h[j] if the j’th minor premise of the last rule is in the set of
possible solutions, and h if no such j exists.

Proposition 9.2. F ∈ PC , i, c ∈ FP, andN ∈ FPC [wit, 1].

Proposition 9.3. The following are properties of L.

1. N(a, h) = h implies tp(h) =
∨i

(∃y)ϕ(a,y) with ϕ(a, i)
true. Thus, the local search problem L defines a multi-
function by mapping a to i (this is called the computed
multi-function).

2. The search problemL in general defines a search prob-
lem in PLSC , assuming that we turn the neighbourhood
(multi-)function into a proper function, which can eas-
ily be achieved by using an intermediate PLSC search
problem which looks for the smallest witness for the
case tp(h) =

∧
C . Then N ∈ FPC .

3. Assume o(ha) = |a|O(1). Then the canonical path
through L, which starts at ha and leads to a local



minimum, is of polynomial length with terms of poly-
nomial size, thus the computed multi-function is in
FPC [wit, o(ha)].

We now apply this general considerations to various con-
crete situations.

Let i ≥ 2 and assume that Si−1
2 ` (∀x)(∃y)ϕ(x, y)

with (∃y)ϕ(x, y) ∈ Σb
i , ϕ ∈ Πb

i−1. By partial cut-
elimination we obtain some BA?-derivation h such that
FV(h) ⊆ {x}, Γ(h) = {(∃y)ϕ(x, y)}, Σb

i−1-crk(h) ≤ 1,
and o(h(a/x)) = O(||a||). We define a search problem by
stating its parameters as follows. Φ := deco(h) is a finite
set of formulae in BFOR, as the “logical complexity” we
take C := Σb

i−1, for the size parameter we choose s := |h|,
the initial value function is given by ha := h(a/x), and the
formula is as given, (∃y)ϕ(x, y).

As o(ha) = O(||a||), Proposition 9.3 shows that
the computed multi-function of this search problem is in
FPΣb

i−1 [wit, O(log n)], which coincides with the descrip-
tion given by Krajı́ček [12].

Let i > 0 and assume that Si
2 ` (∀x)(∃y)ϕ(x, y)

with (∃y)ϕ(x, y) ∈ Σb
i , ϕ ∈ Πb

i−1. By partial cut-
elimination we obtain some BA?-derivation h such that
FV(h) ⊆ {x}, Γ(h) = {(∃y)ϕ(x, y)}, Σb

i−1-crk(h) ≤ 2,
and o(h(a/x)) = O(||a||). We define a search problem by
stating its parameters as follows. Φ := deco(h) is a finite
set of formulae in BFOR, as the “logical complexity” we
take C := Σb

i−1, for the size parameter we choose s := |h|,
the initial value function is given by ha := Eh(a/x), and
the formula is as given, (∃y)ϕ(x, y).

As o(ha) = |a|O(1), Proposition 9.3 shows that the
computed multi-function of this search problem is in
FPΣb

i−1 [wit, nO(1)] = FPΣb
i−1 [wit]. But this immediately

implies that the Σb
i -definable functions of Si

2 are in FPΣb
i−1 ,

because a witness query to (∃z < t)ψ(u, z) can be replaced
by |t| many usual (non-witness) queries to χ(a, b, u) =
(∃z < t)(a ≤ z < b ∧ ψ(u, z)) using a divide and con-
quer strategy. This characterisation coincides with the one
given by Buss [7].

Let i > 0 and assume that Si+1
2 ` (∀x)(∃y)ϕ(x, y)

with (∃y)ϕ(x, y) ∈ Σb
i , ϕ ∈ Πb

i−1. By partial cut-
elimination we obtain some BA?-derivation h such that
FV(h) ⊆ {x}, Γ(h) = {(∃y)ϕ(x, y)}, Σb

i−1-crk(h) ≤ 3,
and o(h(a/x)) = O(||a||). We define a search problem by
stating its parameters as follows. Φ := deco(h) is a finite
set of formulae in BFOR, as the “logical complexity” we
take C := Σb

i−1, for the size parameter we choose s := |h|,
the initial value function is given by ha := EEh(a/x), the
formula is as given, (∃y)ϕ(x, y).

By Proposition 9.3, this defines a search problem in
PLSΣb

i−1 . This coincides with the description given by Buss
and Krajı́ček [9].

Let i ≥ 1, j ≥ 0, and assume that Σb
i+j-L2+jIND `

(∀x)(∃y)ϕ(x, y) with (∃y)ϕ(x, y) ∈ Σb
i+1, ϕ ∈ Πb

i .
By partial cut-elimination we obtain some BA?-derivation
h such that FV(h) ⊆ {x}, Γ(h) = {(∃y)ϕ(x, y)},
Σb

i -crk(h) ≤ j + 1, and o(h(a/x)) = O(|a|3+j). We de-
fine a search problem by stating its parameters as follows.
Φ := deco(h) is a finite set of formulae in BFOR, as the
“logical complexity” we take C := Σb

i , for the size param-
eter we choose s := |h|, the initial value function is given
by

ha := E . . .E︸ ︷︷ ︸
j times

h(a/x)

and the formula is, as given, (∃y)ϕ(x, y).
As o(ha) = O(||a||), Proposition 9.3, 3., shows that

the computed multi-function of this search problem is in
FPΣb

i [wit, 2j(O(log2+j n))], which coincides with the de-
scription given by Pollett [16].

Conclusions and Future Work

In this article we have shown that one application of
cut-reduction on proof notations behaves feasibly. Explicit
bounds have been obtained. We then applied these bounds
to Bounded Arithmetic to reobtain all known definability
results in a uniform way.

In the future, the authors will try to build on these nota-
tions to obtain new definability results for hithero uncharac-
terised classes.
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