On the Computational Complexity of Cut-Reduction

Klaus Aehlig

Arnold Beckmann

Department of Computer Science Swansea University Singleton Park, Swansea SA2 8PP, UK E-mail: {k.t.aehlig|a.beckmann}@swansea.ac.uk

Abstract

Using appropriate notation systems for proofs, cutreduction can often be rendered feasible on these notations. Explicit bounds can be given. Developing a suitable notation system for Bounded Arithmetic, and applying these bounds, all the known results on definable functions of certain such theories can be reobtained in a uniform way.

1 Introduction

Since Gentzen's invention of the "Logik Kalkül" LK and his proof of the "Hauptsatz" [10, 11], cut-elimination has been a topic of almost any paper on proof theory. Mints' invention of continuous normalisation [14, 13] isolates operational aspects of normalisation, that is the manipulations on (infinitary) propositional derivations. These operational aspects are described independently of the system's proof theoretic complexity, but at the expense of introducing the void logical rule of "repetition" to balance derivation trees.

$$\frac{\Gamma}{\Gamma}(\mathcal{R})$$

Note that this rule is both logically valid and preserves the sub-formula property. In this article, we re-examine this situation.

Recall that derivations are often displayed as explicitly given trees where nodes are labelled with information about the inference which happens at this node. E.g., for LK, nodes are labelled by sequents together with names for rules which produce them from their children nodes. Assertions about size or height often refer to these explicit proof trees. On the other hand, in proof theory, derivation are often studied via names, that is, implicit descriptions of (infinite) propositional proofs. A proof notation system is a set (of proof terms) which is equipped with some functions, most prominently a function computing the last inference of a proof named by some notation, and a function that, given a notation h and a natural number i computes some notation for the *i*'th subproof of the derivation named by h. So a proof notation completely determines an explicit propositional derivation tree; the tree can be reconstructed by exploring it from its root and determining the inference at each node of the tree.

The cut-reduction operator can be defined on the names for derivation trees. Using continuous cut-elimination, these transformations will be particularly simple on the names; note that, using names, for derivations it makes sense to ask about the complexity of getting the i'th subderivation, or about the size of the name, even if it denotes an infinite object. We follow Buchholz' approach [5, 6].

We will show that the cut-reduction operator of proof notations can be understood as a polynomial time operation. In particular, we show (in Corollary 6.6) that the size of the notation for the *k*-times cut-reduced proof grows only (k-1) times exponentially in the height of original proof.

In the second part of this article we apply these bounds to Bounded Arithmetic. Bounded Arithmetic has been introduced by Buss [7] as first-order theories of arithmetic with a strong connection to computational complexity. These theories can be given as restrictions of Peano Arithmetic in a suitable language. The restrictions of Peano Arithmetic in S_2^i are twofold. First, only logarithmic induction is considered

$$\varphi(0) \land (\forall x)(\varphi(x) \to \varphi(x+1)) \to (\forall x)\varphi(|x|)$$

where |x| denotes the length of the binary representation of the natural number x. Secondly, the properties, which can be inducted on, must be described by a $\Sigma_i^{\rm b}$ -formula.

An important goal in Bounded Arithmetic is to give good descriptions of the functions that are definable in a certain theory by a certain class of formulae. Buss [7] has characterised the $\Sigma_i^{\rm b}$ -definable functions of S_2^i as $\mathrm{FP}^{\Sigma_{i-1}^p}$, the *i*-th level of the polynomial time hierarchy of functions. Krajíček [12] has characterised the $\Sigma_{i+1}^{\rm b}$ -definable multifunctions of S_2^i as the class $\mathrm{FP}^{\Sigma_i^p}[wit, \mathcal{O}(\log n)]$ of multi-

functions which can be computed in polynomial time using a witness oracle from Σ_i^p , where the number of oracle queries is restricted to $\mathcal{O}(\log n)$ many (*n* being the length of the input). Buss and Krajíček [9] have characterised the Σ_{i-1}^{b} -definable multi-functions of S_2^i as projections of solutions to problems from PLS^{Σ_{i-2}^{p}}, which is the class of polynomial local search problems relativised to Σ_{i-2}^{p} -oracles.

We will re-obtain all these definability characterisations by a uniform method, using the results from the first part of this article. Thus, the potential thereof is that it might lead to characterisations of so far uncharacterised definable search problems.

To do so, we will first define a suitable notation system \mathcal{H}_{BA} for propositional derivations which are obtained by translating [18, 15] Bounded Arithmetic proofs. Applying the machinery of the first part, we obtain a notation system \mathcal{CH}_{BA} of cut-elimination for \mathcal{H}_{BA} . It will have the property that its implicit descriptions, most notably the functions mentioned above, will be polynomial time computable. Using this device we formulate a general local search problem on \mathcal{CH}_{BA} which is suitable to characterise definable multifunctions for Bounded Arithmetic. A more detailled work out of the notation system for Bounded Arithmetic, including full proofs, can be found in a technical report [1].

Other research related to our investigations is an article by Buss [8] which also makes use of the same propositional translation to obtain witnessing results by giving uniform descriptions of translated proofs; however, his approach does not explicitly involve cut-elimination. Furthermore, dynamic ordinal analysis [3, 4] has been the main source of inspiration for the authors for discovering the new uniform proofs of characterisations of definable multifunctions based on search path through cut-reduced derivation trees. The connection is that dynamic ordinals characterise the heights of cut-reduced derivation trees and thus the length of such search paths.

This article is organised as follows. In Sections 2, 3, and 4 we repeat the definition of notation systems for formulae and proofs, and cut-reduction on them. This approach is well-known for infinitary propositional logic, the only slight modification is that we explicitly handle intensional equality. The main purpose of this revision is to fix notation and to make the article self-contained. Sections 5 and 6 contain a main technical part of this article. We prove bounds on the size of notations that occur while exploring a cut-eliminated proof. To do so, we consider a termrewriting system that captures the essential properties of how the cut-reduction operators behave on proof notations when stepping down to a subderivation. Then we prove size bounds using standard term writing methods. Our results, in particular, imply that the size of the notation for the k-times cut-reduced proof grows only (k-1) times exponentially in the height of original proof.

The second part of this article is concerned with applications to Bounded Arithmetic. We characterise the definable functions of various Bounded Arithmetic theories. This forms a novel part of the present investigations. In Section 7 we introduce Bounded Arithmetic. Section 8 defines a notation system for Bounded Arithmetic, and Section 9 then a new characterisation of definable functions in Bounded Arithmetic. The advantage of this approach is its uniformity. All the characterisations are obtained by the same process (akin to that of ordinal analysis) of translating proofs into propositional logic, doing cut-elimination there, and finally "reading off" the correct function class. In that way, determining a class of definable functions has the feeling of doing a "computation", in the sense of mechanically following a recipe. This differs from other approaches in the literature, where the correct function class just comes out of nowhere.

2 Proof Systems

Following Buchholz [6], we present a generic concept of a (Tait style) proof system. A proof system essentially is a set of rules that tells how to derive finite sets of formulae; these finite sets of formulae ("sequents") are to be read disjunctively.

Even in the generic setting, we want an abstract notion of cut-rank. Therefore, we require our formulae to come with some structure, including a notion of rank. As our main example in mind is infinitary propositional logic, we take formulae as a quite abstract notation system—otherwise complexity issues would be hard to define in the presence of infinite objects. As equality for infinite objects usually is undecidable, we require formulae to come with an intensional equality, i.e., we want to know when two formulae are given to us as the same object.

Definition 2.1 (Notation System for Formulae). A *notation* system for formulae is a triple $\langle \mathcal{F}, \approx, \mathrm{rk} \rangle$ where \mathcal{F} is a set (of formulae), \approx a binary relation on \mathcal{F} (*identity between* formulae), and $\mathrm{rk}: \mathfrak{P}(\mathcal{F}) \times \mathcal{F} \to \mathbb{N}$ a function (*rank*).

Let S be a set. The set of all subsets of S will be denoted by $\mathfrak{P}(S)$, the set of all finite subsets of S will be denoted by $\mathfrak{P}_{fin}(S)$.

Definition 2.2 (Sequent). A sequent over $\langle \mathcal{F}, \approx, \mathrm{rk} \rangle$ is a finite subset of \mathcal{F} . We use Γ, Δ, \ldots as syntactic variables to denote sequents. With $\approx \Delta$ we denote the set $\{A \in \mathcal{F} : (\exists B \in \Delta) A \approx B\}.$

We usually write A_1, \ldots, A_n for $\{A_1, \ldots, A_n\}$ and A, Γ, Δ for $\{A\} \cup \Gamma \cup \Delta$, etc. We always write C-rk(A) instead of rk(C, A).

Definition 2.3. A proof system \mathfrak{S} over $\langle \mathcal{F}, \approx, \mathrm{rk} \rangle$ is given by a set of formal expressions called *inference symbols* (syntactic variable \mathcal{I}), and for each inference symbol \mathcal{I} an ordinal $|\mathcal{I}| \leq \omega$, a sequent $\Delta(\mathcal{I})$ and a family of sequents $(\Delta_{\iota}(\mathcal{I}))_{\iota < |\mathcal{I}|}$.

Proof systems may have inference symbols of the form Cut_C for $C \in \mathcal{F}$; these are called "cut inference symbols" and their use will (in Definition 2.5) be measured by the C-cut rank.

Notation 2.4. By writing $(\mathcal{I}) \xrightarrow{\ldots \Delta_{\iota} \ldots (\iota < I)}$ we declare \mathcal{I} as an inference symbol with $|\mathcal{I}| \stackrel{\Delta}{=} I, \Delta(\mathcal{I}) = \Delta,$ $\Delta_{\iota}(\mathcal{I}) = \Delta_{\iota}.$ If $|\mathcal{I}| = n$ we write $\frac{\Delta_0 \Delta_1 \ldots \Delta_{n-1}}{\Delta}$ instead of $\frac{\ldots \Delta_{\iota} \ldots (\iota < I)}{\Delta}$.

Definition 2.5 (Inductive definition of \mathfrak{S} -quasi derivations). If \mathcal{I} is an inference symbol of \mathfrak{S} , and $(d_{\iota})_{\iota < |\mathcal{I}|}$ is a sequence of \mathfrak{S} -quasi derivations, then $d := \mathcal{I}(d_{\iota})_{\iota < |\mathcal{I}|}$ is an \mathfrak{S} -quasi derivation with endsequent

$$\Gamma(d) := \Delta(\mathcal{I}) \cup \bigcup_{\iota < |\mathcal{I}|} (\Gamma(d_{\iota}) \setminus \approx \Delta_{\iota}(\mathcal{I})) ,$$

last inference $last(d) := \mathcal{I}$, subderivations $d(\iota) := d_{\iota}$ for $\iota < |\mathcal{I}|$, height

$$hgt(d) := \sup \left\{ hgt(d_{\iota}) + 1 \colon \iota < |\mathcal{I}| \right\} ,$$

size (provided \mathfrak{S} has inference symbols of finite arity only)

$$\operatorname{sz}(d) := (\sum_{\iota < |\mathcal{I}|} \operatorname{sz}(d_{\iota})) + 1$$

and cut rank

$$\mathcal{C}\operatorname{-crk}(d) := \sup(\{\mathcal{C}\operatorname{-rk}(\mathcal{I})\} \cup \{\mathcal{C}\operatorname{-crk}(d_{\iota}) \colon \iota < |\mathcal{I}|\}) \ .$$

Here we define the cut-rank of \mathcal{I} to be \mathcal{C} -rk(C) + 1 if \mathcal{I} is of the form $\mathcal{I} = \operatorname{Cut}_C$, and 0 otherwise.

Remark 2.6. The reason why the notion introduced in Definition 2.5 is called "quasi derivation", rather than "derivation" is that some proof systems might require additional constraints for a proof to be correct. Most prominently, formal systems of (Bounded) Arithmetic might require an Eigenvariable condition, see Definition 8.2.

However, most of this article is concerned with propositional logic, where derivations and quasi derivations coincide.

3 Propositional Logic

The most prominent logic proof systems are designed for is propositional logic. It is standard proof-theoretical practise to translate more complicated systems, like arithmetic, into propositional logic, using infinitary rules, like Schütte's ω -rule [17].

Formulae of propositional logic are built from true and false by ω -branching conjunctions and disjunctions. To allow to reasonably speak about effectiveness and complexity we consider (as we did already in Section 2) abstract notations for formulae; in Section 4 we will consider notations for derivations as well. A notation for a propositional formula essentially is anything which allows to compute the outermost connective and notations of subformulae.

The logical rules associated with infinitary propositional logic are the obvious ones, i.e., to derive a disjunction, it suffice to derive on disjunct, and to derive a conjunction, all the (infinitely many) conjuncts have to be derived.

Definition 3.1. A notation system $\langle \mathcal{F}, \operatorname{tp}, \cdot [\cdot], \neg, \operatorname{rk}, \approx \rangle$ for (infinitary) propositional formulae is a notation system $\langle \mathcal{F}, \approx, \operatorname{rk} \rangle$ for formulae together with functions $\operatorname{tp}: \mathcal{F} \to \langle \top, \bot, \bigwedge, \bigvee \rangle$, $\cdot [\cdot]: \mathcal{F} \times \mathbb{N} \to \mathcal{F}$, and $\neg: \mathcal{F} \to \mathcal{F}$, called outermost connective, sub-formula, and negation, respectively, such that $\operatorname{tp}(\neg(f)) = \neg(\operatorname{tp}(f)), \neg(f)[n] = \neg(f[n]),$ $\mathcal{C}\operatorname{-rk}(f) = \mathcal{C}\operatorname{-rk}(\neg f), \mathcal{C}\operatorname{-rk}(f[n]) < \mathcal{C}\operatorname{-rk}(f)$ for n < $|\operatorname{tp}(f)|$, and $f \approx g$ implies $\operatorname{tp}(f) = \operatorname{tp}(g), f[n] \approx g[n],$ $\neg(f) \approx \neg(g)$ and $\mathcal{C}\operatorname{-rk}(f) = \mathcal{C}\operatorname{-rk}(g).$

Here, negation of the connectives is defined in the obvious way, i.e., $\neg \top = \bot$, $\neg \bot = \top$, $\neg \land = \lor$, and $\neg \lor = \land$.

It should be noted that if \mathcal{F} is a notation system for formulae, then so is \mathcal{F}/\approx in the obvious way; moreover, in \mathcal{F}/\approx the intensional equality is true equality in the quotient. The reason why we nevertheless explicitly consider an (intensional) equality relation is that we are interested in the computational complexity of notation systems and therefore prefer to take notations as the strings that arise naturally, rather than working on the quotient. This will simplify the notation system introduced in Section 8.

Definition 3.2. Let $\mathcal{F} = \langle \mathcal{F}, \text{tp}, \cdot [\cdot], \neg, \text{rk}, \approx \rangle$ be a notation system for infinitary propositional formulae. The *proof system* $\mathfrak{S}_{\mathcal{F}}$ over \mathcal{F} is the proof system over \mathcal{F} which is given by the following set of inference symbols.

$$(\bigwedge_{C}) \frac{\dots C[n] \dots (n \in \mathbb{N})}{C} \qquad (\bigvee_{C}^{i}) \frac{C[i]}{C}$$
$$(\operatorname{Ax}_{A}) \frac{1}{A} \qquad (\operatorname{Cut}_{C}) \frac{C}{\emptyset} \qquad (\operatorname{Rep}) \frac{\emptyset}{\emptyset}$$

The rules Ax_A , \bigwedge_C and \bigvee_C^i require that $tp(A) = \top$, $tp(C) = \bigwedge$ and $tp(C) = \bigvee$, respectively.

For Cut_C we require $\operatorname{tp}(C) \in \{\top, \Lambda\}$. For other C we use Cut_C as an obvious abbreviation for $\operatorname{Cut}_{\neg C}$ with both premises exchanged.

The $\mathfrak{S}_{\mathcal{F}}$ -derivations are the $\mathfrak{S}_{\mathcal{F}}$ -quasi derivations.

Later in our applications, we will be concerned only with derivations of finite height, for which we can formulate slightly sharper upper bounds on cut-reduction than in the general (infinite) case $(2^{\alpha} \text{ versus } 3^{\alpha})$. Thus, from now on we will restrict attention to derivations of finite height only.

Definition 3.3. Let $d \vdash_{\mathcal{C},m}^{\alpha} \Gamma$ denote that d is an $\mathfrak{S}_{\mathcal{F}}$ -derivation with $\Gamma(d) \subseteq \approx \Gamma, \mathcal{C}\text{-}\mathrm{crk}(d) \leq m$, and $\mathrm{hgt}(d) \leq \alpha < \omega$.

Let $\mathfrak{S}_{\mathcal{F}}$ the propositional proof system over \mathcal{F} . We define Mints' continuous cut-reduction operator [14, 13] following the description given by Buchholz [5]. The only modification is our explicit use of intensional equality.

Theorem 3.4 (and Definition). Let $C \in \mathcal{F}$ with $\operatorname{tp}(C) = \bigwedge$, and $k < \omega$ be given. We define an operator \mathbb{I}_C^k such that $d \vdash_{\mathcal{C},m}^{\alpha} \Gamma, C$ implies $\mathbb{I}_C^k(d) \vdash_{\mathcal{C},m}^{\alpha} \Gamma, C[k]$.

Proof. We argue by the buildup of d. If $last(d) \in \{\bigwedge_D : D \approx C\}$ we set

$$\mathbb{I}_C^k(d) = \operatorname{Rep}(\mathbb{I}_C^k(d(k)))$$

and otherwise we set $\mathbb{I}_C^k(d) := \mathcal{I}(\mathbb{I}_C^k(d(i)))_{i < |\mathcal{I}|}.$

Theorem 3.5 (and Definition). Let $C \in \mathcal{F}$ with $\operatorname{tp}(C) \in \{\top, \Lambda\}$ be given. We define an operator \mathbb{R}_C such that for $\mathcal{C}\operatorname{-rk}(C) \leq m$ we have that $d_0 \vdash_{\mathcal{C},m}^{\alpha} \Gamma, C$ and $d_1 \vdash_{\mathcal{C},m}^{\beta} \Gamma, \neg C$ imply $\mathbb{R}_C(d_0, d_1) \vdash_{\mathcal{C},m}^{\alpha+\beta} \Gamma$.

Proof. We argue by induction on d_1 . Let $\mathcal{I} = \text{last}(d_1)$.

If $\Delta(\mathcal{I}) \cap \approx \{\neg C\} \neq \emptyset$, we note that \mathcal{I} has to be of the form $\mathcal{I} = \bigvee_{D}^{k}$ for some $k \in \mathbb{N}$ and $D \approx \neg C$. So we can set

$$\mathbb{R}_C(d_0, d_1) = \operatorname{Cut}_{C[k]}(\mathbb{I}_C^k(d_0), \mathbb{R}_C(d_0, d_1(0)))$$
.

Otherwise we can just set $\mathbb{R}_C(d_0, d_1) = \mathcal{I}(\mathbb{R}_C(d_0, d_1(i)))_{i < |\mathcal{I}|}$ and obtain a derivation as desired.

Theorem 3.6 (and Definition). We define an operator \mathbb{E} such that: $d \vdash_{\mathcal{C},m+1}^{\alpha} \Gamma$ implies $\mathbb{E}(d) \vdash_{\mathcal{C},m}^{2^{\alpha}-1} \Gamma$.

Proof. We argue by induction on the buildup of d.

If $last(d) = Cut_C$ then C-rk $(C) \le m$ and, without loss of generality, $tp(C) \in \{\top, \Lambda\}$. We set

$$\mathbb{E}(d) = \operatorname{Rep}(\mathbb{R}_C(\mathbb{E}(d(0)), \mathbb{E}(d(k))))$$

which is as desired.

Otherwise we set
$$\mathbb{E}(d) = \mathcal{I}(\mathbb{E}(d(i)))_{i < |\mathcal{I}|}$$
.

Immediately from the definition we note that the operators \mathbb{I} , \mathbb{R} , and \mathbb{E} only inspects the last inference symbol of a derivation to obtain the last inference symbol of the transformed derivation. It should be noted that this continuity would not be possible without the repetition rule.

4 Notations for Derivations and Cut-Elimination

As already mentioned in the introduction to Section 3, we're interested in arguing about complexity of proof transformations. For this question to make sense we need a finite representation of infinite proofs. Again, we take a flexible approach. Any form of finite notation is fine, as long as it is easy to compute the last rule of inference and notations for the subderivations.

Definition 4.1. Let \mathcal{F} be a notation system for formulae, and $\mathfrak{S}_{\mathcal{F}}$ the propositional proof system over \mathcal{F} from Definition 3.2.

A notation system $\mathcal{H} = (\mathcal{H}, \operatorname{tp}, \cdot [\cdot], \Gamma, \operatorname{crk}, o, |\cdot|)$ for $\mathfrak{S}_{\mathcal{F}}$ is a set \mathcal{H} of notations and functions $\operatorname{tp}: \mathcal{H} \to \mathfrak{S}_{\mathcal{F}}$, $\cdot [\cdot]: \mathcal{H} \times \mathbb{N} \to \mathcal{H}, \Gamma: \mathcal{H} \to \mathfrak{P}_{\operatorname{fin}}(\mathcal{F}), \operatorname{crk}: \mathfrak{P}(\mathcal{F}) \times \mathcal{H} \to \mathbb{N}$, and $o, |\cdot|: \mathcal{H} \to \mathbb{N} \setminus \{0\}$ called *denoted last inference*, *denoted sub-derivation, denoted end-sequent, denoted cut rank, denoted height* and *size*, such that $\mathcal{C}\operatorname{-crk}(h[n]) \leq \mathcal{C}\operatorname{-crk}(h), \operatorname{tp}(h) = \operatorname{Cut}_{\mathcal{C}}$ implies $\mathcal{C}\operatorname{-rk}(\mathcal{C}) < \mathcal{C}\operatorname{-crk}(h),$ o(h[n]) < o(h) for $n < |\operatorname{tp}(h)|$, and the following local faithfulness property holds for $h \in \mathcal{H}$:

$$\Delta(\operatorname{tp}(h)) \cup \bigcup_{\iota < |\operatorname{tp}(h)|} \left(\Gamma(h[\iota]) \setminus \approx \Delta_{\iota}(\operatorname{tp}(h))) \right) \subseteq \approx \Gamma(h) .$$

The local faithfulness property suffices to ensure the following Proposition.

Proposition 4.2.
$$\Gamma(h[j]) \subseteq \approx \left(\Gamma(h) \cup \Delta_j(\operatorname{tp}(h))\right)$$

We now extend a notation system \mathcal{H} for $\mathfrak{S}_{\mathcal{F}}$ to a notation system for cut-elimination on \mathcal{H} , by adding notations for the operators \mathbb{I} , \mathbb{R} and \mathbb{E} from the previous section.

If \mathcal{H} is a notation system we define a notation system \mathcal{CH} for cut-elimination for \mathcal{H} by extending \mathcal{H} by derivations $|_{C}^{k}h$ for $\operatorname{tp}(C) = \bigwedge$, $\mathsf{R}_{C}h_{0}h_{1}$ for $\operatorname{tp}(C) \in \{\top, \bigwedge\}$, and $\mathsf{E}h$; in all these cases of this inductive definition the h, h_{0}, h_{1} can be taken from \mathcal{CH} .

The functions tp, $\cdot [\cdot]$, Γ , crk and o are defined as to make the new symbols I, R, and E match the operators I, \mathbb{R} , and \mathbb{E} , respectively. The size $|\cdot|$ is defined in the obvious way, that is, $|I_C^k h| = |Eh| = |h| + 1$ and $|R_C h_0 h_1| = |h_0| + |h_1| + 1$.

It should be observed that for the computation of Γ , the cut-elimination operators I_C^k , R_C and E behave as if there were the following inference symbols.

$$(\mathbf{I}_C^k) \quad \frac{C}{C[k]} \quad (\mathbf{R}_C) \quad \frac{C \quad \neg C}{\emptyset} \quad (\mathbf{E}) \quad \frac{\emptyset}{\emptyset}$$

5 An Abstract Notion of Notation

So far, we only recalled concepts well known in the literature. Now we are interested in studying the size needed by the *notations* for sub-derivations of derivations obtained by the cut-elimination operator. To avoid losing the simple idea in a blurb of notation, we abstract our problem to a simple term-rewriting system.

Definition 5.1. An *abstract system of proof notations* is a set \mathcal{D} of "derivations", together with two functions $|\cdot|, o(\cdot): \mathcal{D} \to \mathbb{N} \setminus \{0\}$, called "size" and "height", and a relation $\to \subseteq \mathcal{D} \times \mathcal{D}$ called "reduction to a sub-derivation", such that $d \to d'$ implies o(d') < o(d).

Observation 5.2 (and Definition). Let \mathcal{F} be a notation system for formulae and $\mathfrak{S}_{\mathcal{F}}$ the propositional proof system over \mathcal{F} . A notation system $\mathcal{H} = (\mathcal{H}, \operatorname{tp}, \cdot [\cdot], \Gamma, \operatorname{crk}, o, |\cdot|)$ for $\mathfrak{S}_{\mathcal{F}}$ gives rise to an abstract system of proof notations by letting $\mathcal{D} = \mathcal{H}$ and defining $d \to d'$ iff there exists an $n < |\operatorname{tp}(d)|$ with d' = d[n].

Definition 5.3. If \mathcal{D} is an abstract system of proof notations, then $\widetilde{\mathcal{D}}$, the "cut elimination closure", is the abstract notation system inductively defined to extend \mathcal{D} and contain derivations Id, Ed, and Rde for $d, e \in \widetilde{\mathcal{D}}$. Here I, E and R are new symbols. The size is extended in the obvious way, that is |Id| = |Ed| = 1 + |d| and |Rde| = 1 + |d| + |e|. The height is extended following the properties of the operators I, E, and R. In other words, we set o(Id) = o(d), o(Rde) = o(d) + o(e), and $o(Ed) = 2^{o(d)} - 1$.

The relation \rightarrow is inductively defined as follows.

$$\frac{d \to d' \text{ in } \mathcal{D}}{d \to d'} \quad \frac{d \to d'}{\mathsf{I}d \to \mathsf{I}d'} \quad \frac{e \to e'}{\mathsf{R}de \to \mathsf{R}de'}$$
$$\frac{d \to d'}{\mathsf{E}d \to \mathsf{E}d'} \quad \frac{d \to d' \quad d \to d''}{\mathsf{R}de \to \mathsf{I}d} \quad \frac{d \to d' \quad d \to d''}{\mathsf{E}d \to \mathsf{R}(\mathsf{E}d')(\mathsf{E}d'')}$$

We immediately note hat $\tilde{\mathcal{D}}$ is an abstract system of proof notations if \mathcal{D} is one.

Let \mathcal{F} be a notation system for formulae, $\mathfrak{S}_{\mathcal{F}}$ the propositional proof system over \mathcal{F} , \mathcal{H} a notation system for $\mathfrak{S}_{\mathcal{F}}$, \mathcal{CH} the notation system for cut-elimination on \mathcal{H} with denoted height o and size $|\cdot|$, and let \mathcal{D} be the abstract system of proof notations associated with \mathcal{H} according to Observation 5.2.

Definition 5.4. The abstraction \overline{h} of $h \in CH$ is obtained by dropping all sub- and superscripts. We denote the set of abstractions for $h \in CH$ by \overline{CH} .

The set of abstractions \overline{CH} for CH is a subsystem of the cut-elimination closure \widetilde{H} of H in the following sense. Let \rightarrow denote the reduction to sub-derivation relation of \widetilde{H} , and define a reduction to sub-derivation relation \rightsquigarrow of \overline{CH} in the obvious way by $\overline{h} \rightsquigarrow \overline{h'}$ iff there exists an $n < |\operatorname{tp}(h)|$ with h' = h[n]. Then $\overline{CH} = \widetilde{H}$ and $\rightsquigarrow \subseteq \rightarrow$.

6 Size Bounds

We now prove a bound on the size of (abstract) notations for cut-elimination. By induction on the buildup of $\widetilde{\mathcal{D}}$ we assign every element a measure that bounds the size of all derivations reachable from it via iterated use of the \rightarrow -relation.

A small problem arises in the base case; if $d \to d'$ in $\widetilde{\mathcal{D}}$ because this holds in \mathcal{D} we have no means of bounding |d'| in terms of |d|. So we use the usual trick [2] when a global measure is needed and assign each element d of $\widetilde{\mathcal{D}}$ not a natural number but a monotone function $\vartheta(d)$ such that $|d'| \leq \vartheta(d)(s)$ for all $d \to^* d'$ whenever $s \in \mathbb{N}$ is a global bound on the size of all elements in \mathcal{D} .

Definition 6.1. An abstract system \mathcal{D} of proof notations is called *s*-bounded (for $s \in \mathbb{N}$), if for all $d \in \mathcal{D}$ it is the case that $|d| \leq s$.

If \mathcal{D} is an abstract system of proof notations and $d \in \mathcal{D}$, then by \mathcal{D}_d we denote the set $\mathcal{D}_d = \{d' \mid d \to^* d'\} \subset \mathcal{D}$ considered an abstract system of proof notation with the structure induced by \mathcal{D} . Here \to^* denotes the reflexive transitive closure of \to .

For \mathcal{D} an abstract system of proof notations and $d \in \mathcal{D}$ we say that d is s-bounded if \mathcal{D}_d is.

Definition 6.2. For \mathcal{D} an abstract system of proof notations we define a *size function* $\vartheta(d)$ for every $d \in \widetilde{\mathcal{D}}$ as a monotone function from \mathbb{N} to \mathbb{N} . $\vartheta(d)$ is defined by induction on the inductive definition of $\widetilde{\mathcal{D}}$ as follows, where we write $\vartheta_s(d)$ as an abbreviation for $\vartheta(d)(s)$.

$$\begin{split} \vartheta_s(d) &= s, \text{provided } d \in \mathcal{D} \\ \vartheta_s(\mathsf{I}d) &= \vartheta_s(d) + 1 \\ \vartheta_s(\mathsf{R}de) &= \max\{|d| + 1 + \vartheta_s(e), \ \vartheta_s(d) + 1\} \\ \vartheta_s(\mathsf{E}d) &= o(d)(\vartheta_s(d) + 2) \end{split}$$

Proposition 6.3. If \mathcal{D} is s-bounded then for every $d \in \mathcal{D}$ we have $|d| \leq \vartheta_s(d)$.

Theorem 6.4. If \mathcal{D} is s-bounded, $d \in \mathcal{D}$ and $d \to d'$, then $\vartheta_s(d) \geq \vartheta_s(d')$.

Proof. Induction on the inductive definition of the relation $d \to d'$ in $\widetilde{\mathcal{D}}$. If $d \to d'$ because it holds in \mathcal{D} then $\vartheta_s(d) = s = \vartheta_s(d')$.

If $\mathsf{E}d \to \mathsf{R}(\mathsf{E}d')(\mathsf{E}d'')$ thanks to $d \to d'$ and $d \to d''$ we

argue as follows

$$\begin{array}{rcl} \vartheta_{s}(\mathsf{R}(\mathsf{E}d')(\mathsf{E}d'')) \\ &= & \max\{ & |\mathsf{E}d'| + 1 + \vartheta_{s}(\mathsf{E}d'') \;, \\ & & \vartheta_{s}(\mathsf{E}d') + 1 \} \\ &= & \max\{ & |d'| + 2 + o(d'')(\vartheta_{s}(d'') + 2) \;, \\ & & o(d')(\vartheta_{s}(d') + 2) \} \\ &\leq & \max\{ & \vartheta_{s}(d) + 2 + o(d'')(\vartheta_{s}(d'') + 2) \;, \\ & & o(d')(\vartheta_{s}(d') + 2) \} \\ &\leq & \max\{ & \vartheta_{s}(d) + 2 + o(d'')(\vartheta_{s}(d) + 2) \;, \\ & & o(d')(\vartheta_{s}(d) + 2) \} \\ &\leq & \max\{ & \vartheta_{s}(d) + 2 + (o(d) - 1)(\vartheta_{s}(d) + 2) \;, \\ & & (o(d) - 1)(\vartheta_{s}(d) + 2) \} \\ &= & \vartheta_{s}(d) + 2 + (o(d) - 1)(\vartheta_{s}(d) + 2) \\ &= & \vartheta_{s}(d) + 2 + (o(d) - 1)(\vartheta_{s}(d) + 2) \\ &= & \vartheta_{s}(d) + 2 + (o(d) - 1)(\vartheta_{s}(d) + 2) \\ &= & \vartheta_{s}(\mathsf{E}d) \end{array}$$

where for the first inequality we used Proposition 6.3, for the second the induction hypothesis, for the third that, since $d \rightarrow d'$ and $d \rightarrow d''$, both o(d') and o(d'') are bounded by o(d) - 1.

If $\mathsf{R}de \to \mathsf{R}de'$ thanks to $e \to e'$, then

$$\begin{array}{ll} \vartheta_s(\mathsf{R}de') \\ = & \max\{|d| + 1 + \vartheta_s(e') \ , \ \vartheta_s(d) + 1\} \\ \leq & \max\{|d| + 1 + \vartheta_s(e) \ , \ \vartheta_s(d) + 1\} \\ = & \vartheta_s(\mathsf{R}de) \end{array}$$

where for the inequality we used the induction hypothesis. The remaining cases are trivial.

Now we draw the desired consequences of our main theorem by putting things together.

Corollary 6.5. If \mathcal{D} is s-bounded, and $d \in \tilde{\mathcal{D}}$ then $\tilde{\mathcal{D}}_d$ is $\vartheta_s(d)$ -bounded.

Recall that iterated exponentiation $2_n(x)$ is defined inductively by setting $2_0(x) = x$ and $2_{n+1}(x) = 2^{2_n(x)}$. An easy induction shows that the height $o(E^n d)$ of the *n*-times cut-reduced derivation *d* is bounded by $2_n(d)$.

Corollary 6.6. If $d \in D$ is s-bounded of height o(d) = hfor $s \ge 2$ and $h \ge 2$, then $E^k(d)$ is $2_{k-1}(2 \cdot h) \cdot s$ -bounded for all $k \ge 1$.

In Corollary 6.6 one should note that the tower of exponentiations has height only k - 1. Hence there is one exponentiation less than the height of the denoted proof.

We conclude this section by remarking that the cutelimination operator can be viewed as a polynomial time computable operation. Assume we modify the size function on $\tilde{\mathcal{D}}$ to $\vartheta_{[k]}$ by changing all ϑ to $\vartheta_{[k]}$ and defining for the last case to be $\vartheta_{[k]}(Ed)(s) = (k+1) \cdot (\vartheta_{[k]}(d)(s) + 2)$.

Then we obtain as before for an s-bounded $\mathcal{D}, d \in \widetilde{\mathcal{D}}$ and $k \in \mathbb{N}$, that $|d| \leq \vartheta_{[k]}(d)(s)$, and $d \to d'$ implies $\vartheta_{[k+1]}(d)(s) \geq \vartheta_{[k]}(d)(s)$. Hence, for $d \in \mathcal{D}$, \mathcal{D} sbounded, and $\mathsf{E}d \to^k d'$, we obtain $|d'| \leq \vartheta_{[k]}(\mathsf{E}d)(s) \leq (k+1) \cdot (s+2)$. From this we can conclude the following observation, where $f[i_1, \ldots, i_k] := f[i_1] \ldots [i_k]$.

Observation 6.7. The cut-reduction operator for infinitary propositional logic is a polynomial time operation in the following sense.

Let \mathcal{F} and \mathcal{H} be some notation systems for infinitary formulae and the propositional system $\mathfrak{S}_{\mathcal{F}}$. Assume that \mathcal{F} and \mathcal{H} are polynomial time computable, and that in addition also the functions $\mathcal{F} \times \mathbb{N}^{\leq \omega} \to \mathcal{F}$, $A, (i_1, \ldots, i_k) \mapsto$ $A[i_1, \ldots, i_k]$ and $\mathcal{H} \times \mathbb{N}^{\leq \omega} \to \mathcal{H}$, $h, (i_1, \ldots, i_k) \mapsto$ $h[i_1, \ldots, i_k]$ are polynomial time computable.

Then, CH and the function $\mathcal{H} \times \mathbb{N}^{<\omega} \to CH$, $h, (i_1, \ldots, i_k) \mapsto (Eh)[i_1, \ldots, i_k]$ are polynomial time computable.

7 Bounded Arithmetic

We will now apply the results on the size of proof notations to Bounded Arithmetic. To keep the presentation simple we will be quite liberal about the language and the basic axioms.

Definition 7.1 (Language of Bounded Arithmetic). *The language* \mathcal{L}_{BA} *of Bounded Arithmetic* contains as nonlogical symbols $\{=, \leq\}$ for the binary relation *equality* and *less than or equal*, and a symbol for each ptime function. In particular, it includes a unary function symbols $|\cdot|$ whose interpretation in the standard model \mathbb{N} is given by the function which computes the length of the binary representation of its argument, and a constant c_a for $a \in \mathbb{N}$ whose interpretation in \mathbb{N} is $c_a^{\mathbb{N}} = a$. We will often write <u>n</u> instead of c_n , and 0 for c_0 .

Bounded quantifiers are introduced as abbreviations. $(\forall x \leq t)A$ is short for $(\forall x)A_x(\min(x,t))$, and $(\exists x \leq t)A$ is short for $(\exists x)A_x(\min(x,t))$. Our introduction of bounded quantifiers is slightly nonstandard. It has the advantage that the usual cut-reduction procedure gives already optimal results. The standard abbreviation of bounded quantification, where e.g. $(\exists x \leq t)A$ denotes $(\exists x)(x \leq t \land A)$, would need a modification of cut-reduction to produce optimal bounds, as two logical connectives are to be removed for one bounded quantifier. Nevertheless, the two kind of abbreviations are equivalent over a weak base theory like BASIC, assuming BASIC includes some standard axiomatisation of min using \leq , for example $a \leq b \rightarrow$ $\min(x, y) = x$ and $\min(a, b) = \min(b, a)$.

Definition 7.2 (Bounded Formulas). The set BFOR of bounded \mathcal{L}_{BA} -formulae is the set of \mathcal{L}_{BA} -formulae consisting of literals and closed under \land , \lor , $(\forall x \leq t)$, $(\exists x \leq t)$.

Negation of complex formulae is an operation on formulae, according to the De Morgan laws; similarly, we use other connectives as obvious abbreviations. For a set C of formulas and a formula A, let the C-rank of A, C-rk(A), be the maximal nesting of logical connectives until a subformula in C is reached.

We now define a restricted (also called *strict*) delineation of bounded formulae.

Definition 7.3. The set $s\Sigma_d^b$ is the subset of bounded \mathcal{L}_{BA} -formulae whose elements are of the form

$$(\exists x_1 \le t_1)(\forall x_2 \le t_2) \dots (Qx_d \le t_d)(\bar{Q}x_{d+1} \le |t_{d+1}|)A(\vec{x})$$

with Q and \overline{Q} being of the corresponding alternating quantifier shape, and A being quantifier free.

Definition 7.4. As axioms we allow all disjunctions A of literals such that A is true in \mathbb{N} under any assignment. Let us denote this set of axioms by BASIC.

Definition 7.5. Let Ind(A, z, t) denote the expression

$$A_z(0) \land (\forall z < t)(A \rightarrow A_z(z+1)) \rightarrow A_z(t)$$

The set Φ -L^mIND consists of all expressions of the form

$$Ind(A, z, 2^{||t|_m|})$$

with $A \in \Phi$, z a variable and t an \mathcal{L}_{BA} -term. Here $|\cdot|_m$ denotes the *m*-fold iteration of the function symbol $|\cdot|$.

8 Notation systems for Bounded Arithmetic

Let \mathcal{F}_{BA} be the set of closed formulae in BFOR. We define the outermost connective function on \mathcal{F}_{BA} to be \top or \perp for true or false literals, respectively, \bigwedge for universally quantified formulae and conjunctions, and \bigvee for existentially quantified formulae and disjunctions. The subformula function is defined in the obvious way, where for finite conjunctions and disjunctions the last conjunct or disjunct is treated as if it were repeated infinitely often.

For t a closed term its numerical value $t^{\mathbb{N}} \in \mathbb{N}$ is defined in the obvious way. Let $\rightarrow_{\mathbb{N}}^{1}$ be the compatible closure of $t \mapsto \underline{t}^{\mathbb{N}}$ for t a closed term. Let $\approx_{\mathbb{N}}$ denote the reflexive, symmetric and transitive closure of $\rightarrow_{\mathbb{N}}^{1}$. If the depth of expressions is restricted, and the number of function symbols representing polynomial time functions is also restricted to a finite subset, then the relation $\approx_{\mathbb{N}}$ is polynomial time decidable.

From now on, we will assume that \mathcal{F}_{BA} implicitly contains a constant k without explicitly mentioning it, which bounds the above mentioned depth of expressions and indices of function symbols allowed to occur. All formulae and terms used in \mathcal{F}_{BA} are thus assumed to obey these restriction on occurrences of function symbols and depth. Then all relations and functions in \mathcal{F}_{BA} are polynomial time computable.

Let BA^{∞} denote the propositional proof system over \mathcal{F}_{BA} according to Definition 3.2.

Definition 8.1. The *finitary proof system* BA^* is the proof system over $\langle BFOR, \approx_{\mathbb{N}}, rk \rangle$ which is given by the following set of inference symbols.

$$(Ax_{\Delta}) \xrightarrow{} if \bigvee \Delta \in BASIC$$

$$(\bigwedge_{A_{0} \land A_{1}}) \xrightarrow{A_{0}} A_{1} \quad (\bigvee_{A_{0} \lor A_{1}}^{k}) \xrightarrow{A_{k}} A_{0} \lor A_{1}$$

$$(\bigwedge_{(\forall x)A}^{y}) \xrightarrow{A_{x}(y)} ((\forall x)A) \quad (\bigvee_{(\exists x)A}^{t}) \xrightarrow{A_{x}(t)} A_{x}(t)$$

$$(IND_{F}^{y,t}) \xrightarrow{\neg F, F_{y}(y+1)} \nabla F_{y}(0), F_{y}(2^{|t|})$$

$$(IND_{F}^{y,n,i}) \xrightarrow{\neg F, F_{y}(y+1)} \nabla F_{y}(n), F_{y}(n+2^{i})$$

$$(Cut_{C}) \xrightarrow{C} \neg C}$$

In our finitary proof system Schütte's ω -rule [17] is replaced by rules with Eigenvariable conditions. Of course, the precise name of the Eigenvariable does not matter, as long as it *is* an Eigenvariable. For this reason, we think of the inference symbols $\bigwedge_{(\forall x)A}^{y}$, $\text{IND}_{F}^{y,t}$, and $\text{IND}_{F}^{y,n,i}$ in BA*-quasi derivations as binding the variable y in the respective sub-derivations. Substitution is defined according to this intuition.

Definition 8.2 (Inductive definition of $\vec{x}: d$). For \vec{x} a finite list of disjoint variables and $d = \mathcal{I}d_0 \dots d_{n-1}$ a BA*-quasiderivation we inductively define the relation $\vec{x}: d$ that d is a BA*-derivation with free variables among \vec{x} as follows.

If $\vec{x}, y: h_0$ and $\mathcal{I} \in \{\bigwedge_{(\forall x)A}^{y}, \text{IND}_F^{y,t}, \text{IND}_F^{y,n,i}\}$ for some A, F, t, n, i, and $\text{FV}(\Gamma(\mathcal{I}h_0)) \subset \{\vec{x}\}$ then $\vec{x}: \mathcal{I}h_0$.

If \vec{x} : h_0 and $FV((\exists x)A), FV(t) \subseteq \{\vec{x}\}$ then $\vec{x}: \bigvee_{(\exists x)A}^t h_0$.

If $\vec{x}: h_0, \vec{x}: h_1$ and $FV(C) \subseteq \{\vec{x}\}$ then $\vec{x}: Cut_C h_0 h_1$. If $FV(\Delta) \subseteq \{\vec{x}\}$ then $\vec{x}: Ax_{\Delta}$,

If $\vec{x}: h_0, \vec{x}: h_1$ and $\mathcal{I} = \bigwedge_{A_0 \wedge A_1}$ with $FV(A_0 \wedge A_1) \subset {\vec{x}}$ then $\vec{x}: \mathcal{I}h_0h_1$.

If \vec{x} : h_0 and $\mathcal{I} = \bigvee_{A_0 \lor A_1}^k$ with $FV(A_0 \lor A_1) \subset {\vec{x}}$ then \vec{x} : $\mathcal{I}h_0$.

A BA^{*}-derivation is a BA^{*}-quasi derivation h such that for some \vec{x} it holds \vec{x} : h. We call a BA^{*}-derivation hclosed, if \emptyset : h.

We note that if \vec{x} : *h* then $FV(\Gamma(h)) \subseteq {\vec{x}}$. In particular $FV(\Gamma(h)) = \emptyset$ for closed *h*.

Moreover, if \vec{x} : h and y is a variable and t a closed term, then $\vec{x} \setminus \{y\}$: h(t/y) and moreover $\Gamma(h(t/y)) \subseteq (\Gamma(h))(t/y)$.

Let \mathcal{H}_{BA} be the set of closed BA*-derivations. For each $h \in \mathcal{H}_{BA}$ we define the denoted last inference tp(h) and subderivations h[j] following the obvious translation into propositional logic, were induction up to 2^i is proved by a balanced tree of cuts of height *i*. The size function $|\cdot|$ on \mathcal{H}_{BA} is given by |h| := sz(h) and the height o(h) is defined according to the above description of a tree of balanced cuts; to bound the length induction is carried out on, a monotone polynomial bounding term for the whole derivation is extracted first. Observe that, using the auxiliary induction inference symbols $(IND_F^{y,n,i})$, the translation of induction can be denoted in such a way that the size of h[i] is always bounded by the size of h.

In this way we obtain a notation system for BA^{∞} in the sense of Definition 4.1. We note that all the involved functions are polynomial-time computable.

9 Computational Content of Proofs

We will now show how the results on bounding the lengths of proof notations can be used to obtain characterisations of definable functions.

Assume we have a proof of a statement $(\forall x)(\exists y)\varphi(x, y)$. For any given $n \in \mathbb{N}$ we can use inversion to get a proof of $(\exists y)\varphi(\underline{n}, y)$. The task now is to find a witnessing k for the existential formula. After reducing the cut-rank so that the ranks of remaining cuts match the rank of φ , we can define a path $d = d_0, d_1, d_2, \ldots$ through the derivation d of $(\exists y)\varphi(\underline{n}, y)$ such that always $d_{\ell+1} = d_{\ell}[i]$ for some i, and $\Gamma(d_{\ell})$ is of the shape $\Gamma(d_{\ell}) = (\exists y)\varphi(y), \Gamma_{\ell}$ where all formulae $A \in \Gamma_{\ell}$ are false and of rank at most that of φ . As d is well-founded, such a path must be finite. It is easy to note that it has to end with a $\bigvee_{(\exists y)\varphi(y)}^{k}$ -inference for which $\varphi(k)$ is true. Hence we found our witness.

Such a path can be seen as a canonical path in a local search problem on a specific subset of BA^{∞} derivations. Using notations for these proofs, the above procedure becomes effective and even feasible in many cases. Instantiating this general procedure by different formula complexities and sets of proof notations we reobtain—but in a uniform way!—characterisations of the definable functions of various theories of Bounded Arithmetic.

Our first step in the technical development is to note that all the formulae we deal with are bounded. In other words, even though, say, universal formulae have infinitely many subformulae, only finitely many carry non-trivial information. In fact, it is easy to define, for every derivation h, monotone terms bd(h) that bounds all the indices ever needed to access a subformula or subderivation, and ibd(h)that bounds the length of any induction that has to be considered. We also note, that the size of the conclusion of a derivation is polynomially (in fact, linearly) bounded in the size of the notation of a derivation. Finally, we can compute in polynomial time the list deco(h) of formulae that decorate any inference symbol which occurs in h.

For $s \in \mathbb{N}$ a size parameter we define $\mathcal{H}_{BA}^{s} := \{h \in \mathcal{H}_{BA} : |h| \leq s\}$. Then \mathcal{H}_{BA}^{s} is an s-bounded, abstract system of proof notations, because we observe that $h \in \mathcal{H}_{BA}$ and $h \to h'$ implies $|h'| \leq |h|$.

Remember that \overline{h} for $h \in C\mathcal{H}_{BA}$ denotes the abstraction of h which allows us to view $C\mathcal{H}_{BA}$ as a subsystem of $\widetilde{\mathcal{H}}_{BA}$. For $h \in C\mathcal{H}_{BA}$ we define $\vartheta(h)(s) := \vartheta(\overline{h})(s)$. Then Theorem 6.4 now reads as follows. If $h \in C\mathcal{H}_{BA}^s$ and $h \to h'$, then $\vartheta(h)(s) \ge \vartheta(h')(s)$.

Definition 9.1. We define a local search problem L parameterised by a finite set of bounded formulae $\Phi \subset BFOR$, a "logical complexity" C given as a polynomial time decidable set of \mathcal{L}_{BA} -formulae, a size parameter $s \in \mathbb{N}$, an initial value function $h : \mathbb{N} \to Comp\mathcal{H}_{BA}^s$, where h_a is presented in the form $\mathbb{E} \dots \mathbb{E}h(\underline{a}/x)$ for some BA^* -derivation h, and a formula $(\exists y)\varphi(x,y) \in \Phi$ with $\neg \varphi \in C$. It will have the property that, for every $a \in \mathbb{N}$, $\Gamma(h_a) = \{(\exists y)\varphi(\underline{a}, y)\}$, C-crk $(h_a) \leq 1$, $o(h_a) = 2^{|a|^{O(1)}}$, $\vartheta(h_a)(s) = |a|^{O(1)}$, and $deco(h_a) \subseteq \Phi_a$.

The set of possible solutions $F(a) \in \mathfrak{P}_{fin}(\operatorname{Comp}\mathcal{H}^s_{BA})$ is given as the set of those $h \in \operatorname{Comp}\mathcal{H}^s_{BA}$ which satisfy $\Gamma(h) \subseteq \{(\exists y)\varphi(\underline{a}, y)\} \cup \Delta$ for some $\Delta \subseteq \mathcal{C} \cup \neg \mathcal{C}$ such that all $A \in \Delta$ are closed and false, \mathcal{C} -crk $(h) \leq 1$, $o(h) \leq o(h_a), \vartheta(h)(s) \leq \vartheta(h_a)(s), \operatorname{bd}(h) \leq \operatorname{bd}(h_a)$ and $\operatorname{ibd}(h) \leq \operatorname{ibd}(h_a)$, and $\operatorname{deco}(h) \subseteq \Phi_{\operatorname{bd}(h_a)}$.

The *initial value function* is given by $i(a) := h_a$. The *cost function* is defined as c(a, h) := o(h). Finally, the *neighbourhood function* is given by setting N(a, h) to be h[j] if the j'th minor premise of the last rule is in the set of possible solutions, and h if no such j exists.

Proposition 9.2. $F \in \mathbb{P}^{\mathcal{C}}$, $i, c \in \mathbb{FP}$, and $N \in \mathbb{FP}^{\mathcal{C}}$ [wit, 1].

Proposition 9.3. *The following are properties of L.*

- 1. N(a,h) = h implies $tp(h) = \bigvee_{(\exists y)\varphi(\underline{a},y)}^{i}$ with $\varphi(\underline{a},\underline{i})$ true. Thus, the local search problem L defines a multifunction by mapping a to i (this is called the computed multi-function).
- 2. The search problem L in general defines a search problem in PLS^C, assuming that we turn the neighbourhood (multi-)function into a proper function, which can easily be achieved by using an intermediate PLS^C search problem which looks for the smallest witness for the case $tp(h) = \bigwedge_C$. Then $N \in FP^C$.
- 3. Assume $o(h_a) = |a|^{O(1)}$. Then the canonical path through L, which starts at h_a and leads to a local

minimum, is of polynomial length with terms of polynomial size, thus the computed multi-function is in $FP^{\mathcal{C}}[wit, o(h_a)].$

We now apply this general considerations to various concrete situations.

Let $i \geq 2$ and assume that $S_2^{i-1} \vdash (\forall x)(\exists y)\varphi(x,y)$ with $(\exists y)\varphi(x,y) \in \Sigma_i^b$, $\varphi \in \Pi_{i-1}^b$. By partial cutelimination we obtain some BA*-derivation h such that $FV(h) \subseteq \{x\}, \Gamma(h) = \{(\exists y)\varphi(x,y)\}, \Sigma_{i-1}^b$ -crk $(h) \leq 1$, and $o(h(\underline{a}/x)) = O(||a||)$. We define a search problem by stating its parameters as follows. $\Phi := \operatorname{deco}(h)$ is a finite set of formulae in BFOR, as the "logical complexity" we take $\mathcal{C} := \Sigma_{i-1}^b$, for the size parameter we choose s := |h|, the initial value function is given by $h_a := h(\underline{a}/x)$, and the formula is as given, $(\exists y)\varphi(x, y)$.

As $o(h_a) = O(||a||)$, Proposition 9.3 shows that the computed multi-function of this search problem is in $FP^{\sum_{i=1}^{b}}[wit, O(\log n)]$, which coincides with the description given by Krajíček [12].

Let i > 0 and assume that $S_2^i \vdash (\forall x)(\exists y)\varphi(x,y)$ with $(\exists y)\varphi(x,y) \in \Sigma_i^{\rm b}, \varphi \in \Pi_{i-1}^{\rm b}$. By partial cutelimination we obtain some BA*-derivation h such that $\mathrm{FV}(h) \subseteq \{x\}, \Gamma(h) = \{(\exists y)\varphi(x,y)\}, \Sigma_{i-1}^{\rm b}\text{-crk}(h) \leq 2,$ and $o(h(\underline{a}/x)) = O(||a||)$. We define a search problem by stating its parameters as follows. $\Phi := \operatorname{deco}(h)$ is a finite set of formulae in BFOR, as the "logical complexity" we take $\mathcal{C} := \Sigma_{i-1}^{\rm b}$, for the size parameter we choose s := |h|, the initial value function is given by $h_a := \operatorname{Eh}(\underline{a}/x)$, and the formula is as given, $(\exists y)\varphi(x,y)$. As $o(h_a) = |a|^{O(1)}$, Proposition 9.3 shows that the

As $o(h_a) = |a|^{O(1)}$, Proposition 9.3 shows that the computed multi-function of this search problem is in $\operatorname{FP}^{\sum_{i=1}^{b}}[\operatorname{wit}, n^{O(1)}] = \operatorname{FP}^{\sum_{i=1}^{b}}[\operatorname{wit}]$. But this immediately implies that the $\sum_{i=1}^{b}$ -definable functions of S_2^i are in $\operatorname{FP}^{\sum_{i=1}^{b}}$, because a witness query to $(\exists z < t)\psi(u, z)$ can be replaced by |t| many usual (non-witness) queries to $\chi(a, b, u) = (\exists z < t)(a \leq z < b \land \psi(u, z))$ using a divide and conquer strategy. This characterisation coincides with the one given by Buss [7].

Let i > 0 and assume that $S_2^{i+1} \vdash (\forall x)(\exists y)\varphi(x,y)$ with $(\exists y)\varphi(x,y) \in \Sigma_i^{\rm b}, \varphi \in \Pi_{i-1}^{\rm b}$. By partial cutelimination we obtain some BA*-derivation h such that $\mathrm{FV}(h) \subseteq \{x\}, \Gamma(h) = \{(\exists y)\varphi(x,y)\}, \Sigma_{i-1}^{\rm b}\text{-crk}(h) \leq 3$, and $o(h(\underline{a}/x)) = O(||a||)$. We define a search problem by stating its parameters as follows. $\Phi := \operatorname{deco}(h)$ is a finite set of formulae in BFOR, as the "logical complexity" we take $\mathcal{C} := \Sigma_{i-1}^{\rm b}$, for the size parameter we choose s := |h|, the initial value function is given by $h_a := \operatorname{EE}h(\underline{a}/x)$, the formula is as given, $(\exists y)\varphi(x, y)$.

By Proposition 9.3, this defines a search problem in $PLS^{\sum_{i=1}^{b}}$. This coincides with the description given by Buss and Krajíček [9].

Let $i \geq 1$, $j \geq 0$, and assume that $\sum_{i+j}^{b} L^{2+j}$ IND $\vdash (\forall x)(\exists y)\varphi(x,y)$ with $(\exists y)\varphi(x,y) \in \sum_{i+1}^{b}$, $\varphi \in \prod_{i}^{b}$. By partial cut-elimination we obtain some BA*-derivation h such that FV $(h) \subseteq \{x\}$, $\Gamma(h) = \{(\exists y)\varphi(x,y)\}$, \sum_{i}^{b} -crk $(h) \leq j + 1$, and $o(h(\underline{a}/x)) = O(|a|_{3+j})$. We define a search problem by stating its parameters as follows. $\Phi := \operatorname{deco}(h)$ is a finite set of formulae in BFOR, as the "logical complexity" we take $\mathcal{C} := \Sigma_{i}^{b}$, for the size parameter we choose s := |h|, the initial value function is given by

$$h_a := \underbrace{\mathsf{E} \dots \mathsf{E}}_{j \text{ times}} h(\underline{a}/x)$$

and the formula is, as given, $(\exists y)\varphi(x, y)$.

As $o(h_a) = O(||a||)$, Proposition 9.3, 3., shows that the computed multi-function of this search problem is in $FP^{\Sigma_i^b}[wit, 2_j(\mathcal{O}(\log^{2+j} n))]$, which coincides with the description given by Pollett [16].

Conclusions and Future Work

In this article we have shown that one application of cut-reduction on proof notations behaves feasibly. Explicit bounds have been obtained. We then applied these bounds to Bounded Arithmetic to reobtain all known definability results in a uniform way.

In the future, the authors will try to build on these notations to obtain new definability results for hithero uncharacterised classes.

Acknowledgements

The authors gratefully acknowledge support by the Engineering and Physical Sciences Research Council (EPSRC) under grant number EP/D03809X/1.

References

- K. Aehlig and A. Beckmann. On the computational complexity of cut-reduction. Technical Report CSR15-2007, Department of Computer Science, Swansea University, Dec. 2007. http://arxiv.org/abs/0712.1499.
- [2] K. Aehlig and H. Schwichtenberg. A syntactical analysis of non-size-increasing polynomial time computation. In *Proceedings of the Fifteenth IEEE Symposium on Logic in Computer Science (LICS '00)*, pages 84 – 91, June 2000.
- [3] A. Beckmann. Dynamic ordinal analysis. Arch. Math. Logic, 42:303–334, 2003.
- [4] A. Beckmann. Generalised dynamic ordinals—universal measures for implicit computational complexity. In *Logic Colloquium '02*, volume 27 of *Lect. Notes Log.*, pages 48– 74. Assoc. Symbol. Logic, La Jolla, CA, 2006.
- [5] W. Buchholz. Notation systems for infinitary derivations. *Archive for Mathematical Logic*, 30:277–296, 1991.

- [6] W. Buchholz. Explaining Gentzen's consistency proof within infinitary proof theory. In *Computational logic and* proof theory (Vienna, 1997), volume 1289 of *Lecture Notes* in Comput. Sci., pages 4–17. Springer, Berlin, 1997.
- [7] S. R. Buss. Bounded arithmetic, volume 3 of Studies in Proof Theory. Lecture Notes. Bibliopolis, Naples, 1986.
- [8] S. R. Buss. Bounded arithmetic and constant depth Frege proofs. In *Complexity of computations and proofs*, volume 13 of *Quad. Mat.*, pages 153–174. Dept. Math., Seconda Univ. Napoli, Caserta, 2004.
- [9] S. R. Buss and J. Krajíček. An application of Boolean complexity to separation problems in bounded arithmetic. *Proc. London Math. Soc.* (3), 69(1):1–21, 1994.
- [10] G. Gentzen. Untersuchungen über das logische Schließen.
 I. Mathematische Zeitschrift, 39:176–210, 1935.
- [11] G. Gentzen. Untersuchungen über das logische Schließen. II. *Mathematische Zeitschrift*, 39:405–431, 1935.
- [12] J. Krajíček. Fragments of bounded arithmetic and bounded query classes. *Trans. Amer. Math. Soc.*, 338(2):587–598, 1993.
- [13] G. Kreisel, G. Mints, and S. Simpson. The use of abstract language in elementary metamathematics: Some pedagogic examples. In R. Parikh, editor, *Logic Colloquium*, volume 453 of *Lecture Notes in Mathematics*, pages 38–131. Springer, 1975.
- [14] G. E. Mints. Finite investigations of transfinite derivations. *Journal of Soviet Mathematics*, 10:548–596, 1978. Translated from: Zap. Nauchn. Semin. LOMI 49 (1975). Cited after Grigori Mints. *Selected papers in Proof Theory*. Studies in Proof Theory. Bibliopolis, 1992.
- [15] J. Paris and A. Wilkie. Counting problems in bounded arithmetic. In A. Dold and B. Eckmann, editors, *Methods* in *Mathematical Logic (Proceedings Caracas 1983)*, number 1130 in Lecture Notes in Mathematics, pages 317–340. Springer, 1985.
- [16] C. Pollett. Structure and definability in general bounded arithmetic theories. Ann. Pure Appl. Logic, 100(1-3):189– 245, 1999.
- [17] K. Schütte. Die unendliche Induktion in der Zahlentheorie. Mathematische Annalen, 122:369–389, 1951.
- [18] W. W. Tait. Normal derivability in classical logic. In J. Barwise, editor, *The Syntax and Semantics of Infinitatry Languages*, number 72 in Lecture Notes in Mathematics, pages 204–236. Springer, 1968.