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Abstract

Consider the following restriction of the polymorphically typed lambda calculus
(“System F”). All quantifications are parameter free. In other words, in every uni-
versal type ∀α.τ , the quantified variable α is the only free variable in the scope τ
of the quantification. This fragment can be locally proven terminating in a system
of intuitionistic second-order arithmetic known to have strength of finitely iterated
inductive definitions.

1 Introduction and Related Work

The polymorphic lambda calculus (“System F”) [8,12] is a very expressive type
system. It nevertheless has the property that all typable terms are strongly
normalising. However, a constructive understanding of polymorphic types is
not easily possible, due to the inherent impredicativity. For the definition of a
type ∀ατ we presuppose knowledge already of all types. Therefore a predica-
tive understanding, at least of subsystems of System F , is desirable. Altenkirch
and Coquand proposed a “finitary subsystem of the polymorphic lambda cal-
culus” [2] that characterises precisely the functions provably recursive in Peano
Arithmetic.

In this article we present a fragment of the polymorphic lambda calculus that
characterises precisely the functions provably recursive by finitely iterated
inductive definitions. The system can be motivated by the observation that
allowing parameters in quantifications forces us to consider semantical objects
[[β]] 7→ [[∀α.τ(α, β)]] that are functions. On the other hand for τ(α) depending
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only on α the type ∀α.τ(α) can have a meaning of its own, independent of
other types. We only refer to the collection of types as a whole.

Based on this observation, a system of intuitionistic second order arithmetic
has been studied [1] that has strength of finitely iterated inductive definitions.
We show that the proposed fragment of system F has the same strength. One
the one hand, the tree classes can naturally be formalised in the proposed frag-
ment. On the other hand, we show the proposed fragment normalising by a
proof that can locally be formalised in the said fragment of second order arith-
metic. Finally, we show that the connection between the arithmetical system
and the polymorphic lambda-calculus is a very tight one. In fact, the proofs
themselves, that a function exists, can be used as lambda-term to compute
that very function.

The article is organised as follows. In Section 2 we introduce the system of
parameter-free polymorphism. We then show (in Section 3) that the type
quantifications can naturally be assigned levels and (in Section 4) that recur-
sion on tree classes can be expressed. We then recall (in Section 5) results on
a stratified system of second-order arithmetic and formalise (in Section 6) a
normalisation proof. Finally we indicate (in Section 7) how proofs in second-
order arithmetic can be interpreted as lambda terms computing the function
claimed to exist.

2 Non-Parametric Polymorphic Types

As discussed in the introduction, considering non-parametric polymorphism,
we obtain a potentially more manageable system. We will now make precise
our notion of non-parametric polymorphism.

Definition 1 The non-parametric polymorphic types are given by the gram-
mar

ρ ::= α | ρ → σ | ρ× σ | ∀αρ

where the case ∀αρ is subject to the proviso FV(ρ) ⊂ {α}.

Remark 2 Another way to think of non-parametric polymorphic types is to
take the above grammar with the understanding that α is not meta notation
for type variables, but the (only) type variable.

Raw terms for all our calculi are those of the untyped λ-calculus [3] with
ordered pairs.

Definition 3 The lambda terms, or terms for short, are given by the gram-
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mar

s, t ::= x | λx.t | st | 〈s; t〉 | tL | tR
where x is bound in λx.t. We identify lambda terms up to renaming of bound
variables. β-equality is the congruent closure of the reductions (λxt)s 7→ t[x:=s],
〈t; s〉L 7→ t, and 〈t; s〉R 7→ s.

Raw terms are assigned polymorphic types in the usual way.

Definition 4 (Γ ` t : ρ) For Γ a type context, that is, a finite set of pairs x : σ
of variables and types where each variable occurs at most once, t a term and
ρ a type we define the typing relation Γ ` t : ρ inductively as follows.

• Γ, x : ρ ` x : ρ.
• If Γ, x : ρ ` t : σ then Γ ` λxt : ρ → σ.
• If Γ ` t : ρ → σ and Γ ` s : ρ then Γ ` ts : σ.
• If Γ ` t : ρ and Γ ` s : σ then Γ ` 〈t; s〉 : ρ× σ.
• If Γ ` t : ρ× σ then Γ ` tL : ρ and Γ ` tR : σ.
• If Γ ` t : ρ with α not free in Γ then Γ, ∆ ` t : ∀αρ.
• If Γ ` t : ∀αρ then Γ ` t : ρ[α:=σ].

We call Γ ` t : ρ a non-parametric derivation, if all the occurring types in the
whole underlying generation tree of that relation are non-parametric polymor-
phic types.

Remark 5 Immediately from the definition we note that weakening is admis-
sible, even in a reading with α as only type variable. This is achieved by the
additional ∆ in the ∀-rule.

As usual, natural numbers are encoded as Church numerals in the λ-calculus.

Remark 6 The n’th Church numeral is denoted by cn and defined to be

cn = λxy.xny = λxy. x(x(. . . (x︸ ︷︷ ︸
n

y))).

Remark 7 (Axiomatisation of the β-equality relation) Let · ∼ · be an
abbreviation for some arithmetical formalisation of β-equality (as Σ0

1-formula).
We list all the properties of ∼ that we will need when formalising arguments
about the lambda calculus.

• x ∼ x and x ∼ y → y ∼ x and x ∼ y → y ∼ z → x ∼ z
• for every λ-term t(x, ~y) with free variables among x, ~y we have the relation

p(λxt(x, ~̇y))ẋq ∼ pt(ẋ, ~̇y)q. Moreover, we have pcṅẏq ∼ pλx.ẏṅxq.
• p〈ẋ; ẏ〉Lq ∼ x and p〈ẋ; ẏ〉Rq ∼ y
• x ∼ y → pẋżq ∼ pẏżq ∧ pżẋq ∼ pżẏq ∧ pẋLq ∼ pẏLq ∧ pẋRq ∼ pẏRq
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3 Stratified Polymorphic Types

As quantification is parameter free, all quantifications are properly nested and
not interleaved (in the sense of Matthes [10]). We can therefore assign each
type variable a “level”, indicating at which nesting depth it is bound. This
gives our stratified variant F×n of System F .

We assume a fixed enumeration α0, α1, . . . of type variables.

Definition 8 (Tn, F×n -types) The set Tn(αn) is inductively (by induction
over n) defined to be simple types over {αn} ∪ {∀αkρ | k < n ∧ ρ ∈ Tk(αk)}.

If σ is a type (this includes the case of σ a type variable) we write Tn(σ) for
the set {ρ[αn:=σ] | ρ ∈ Tn(αn)}.

The set
⋃

k≤n Tk(αk) is called the set of “F×n -types”.

Remark 9 The F×n -types ρn ∈ Tn(αn) can also be described by the grammar

ρn, σn ::= αn | ρn → σn | ρn × σn | ∀α`.ρ`

with the proviso that in the last clause we have ` < n.

Definition 10 (F×n -derivations) A typing derivation (in the sense of Defi-
nition 4) is called an an F×n -derivation, if and only if all occurring types in
the whole underlying generation tree are F×n -types.

In particular, the rules for introducing and eliminating polymorphic types are
as follows.

• If Γ ` t : ρ` with ρ` ∈ T`(α`) and α` not free in Γ then Γ, ∆ ` t : ∀α`ρ`.
• If Γ ` t : ∀α`ρ` then Γ ` t : ρ`[α`:=σ`′ ] for σ`′ ∈ T`′(α`′) for arbitrary `′ < n,

not necessarily related to ` in any way. However, [α`:=σ`′ ] is required to be
an F×n -type.

In our next definition we introduce the concept of the “level” of a type, in
the sense of the nesting level of type quantifications. This is different from
the usual level of simple types that counts how often variables occur left to
an arrow. As, however, all our types are polymorphic types, and hence the
other measure (which we won’t use) is not defined on them anyway, there is
no danger of confusion.

Definition 11 By induction on the non-parametric type ρ we define its level
lv(ρ) by setting lv(α) = 0, lv(ρ× σ) = lv(ρ → σ) = max{lv(ρ), lv(σ)}, and
lv(∀αρ) = 1 + lv(ρ).
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Definition 12 By induction on the non-parametric type ρ we define its strat-
ified alpha-variant ρ̃ by setting α̃ = α, ρ̃× σ = ρ̃ × σ̃, ρ̃ → σ = ρ̃ → σ̃, and
∀̃αρ = ∀αlv(ρ).ρ̃[α:=αlv(ρ)].

As the name “stratified alpha-variant” suggests, it is indeed α-equivalent to
the original type. More precisely, by a simple induction on ρ we obtain

Proposition 13 ρ̃ and ρ are alpha-equivalent.

By a simple induction on ρ we obtain

Proposition 14 ρ̃ ∈ Tlv(ρ)(α)

Next we define a level-aware type assignment calculus. In the following def-
inition one should think of the n as some canonical decoration for a Γ `
t : ρ derivation. In fact, such a decoration always exists, as we will show in
Lemma 18.

To simplify the formulation we slightly abuse notation and write Γ ⊂ Σ, for
Γ a context and Σ a set of types, to express that for every pair x : σ in Γ it is
the case that σ ∈ Σ.

Definition 15 (Γ ` t : ρ :: [n]) For Γ a type context, t a term and ρ a type
we define the typing relation Γ ` t : ρ inductively as follows.

• If Γ ⊂ Tn(α), and if ρ ∈ Tn(α) then Γ, x : ρ ` x : ρ :: [n].
• If Γ, x : ρ ` t : σ :: [n] then Γ ` λxt : ρ → σ :: [n].
• If Γ ` t : ρ → σ :: [n] and Γ ` s : ρ :: [n] then Γ ` ts : σ :: [n].
• If Γ ` t : ρ :: [n] and Γ ` s : σ :: [n] then Γ ` 〈t; s〉 : ρ× σ :: [n].
• If Γ ` t : ρ× σ :: [n] then Γ ` tL : ρ :: [n] and Γ ` tR : σ :: [n].
• If Γ ` t : ρ :: [n] with α not free in Γ and n > lv(ρ) and ∆ ⊂ Tn(α) then

Γ, ∆ ` t : ∀αlv(ρ)ρ[α:=αlv(ρ)] :: [n].
• If Γ ` t : ∀αmρ :: [n] and σ ∈ Tk(α) and n′ ≥ n, m + 1, k then Γ `

t : ρ[α:=σ] :: [n′].

Remark 16 Again, a simple induction shows that weakening is admissible,
that is, if Γ ` t : ρ :: [n] and Γ ⊂ Γ′ ⊂ Tn(α) then Γ′ ` t : ρ :: [n].

Proposition 17 If Γ ` t : ρ :: [n] and n ≤ n′ then Γ ` t : ρ :: [n′],

PROOF. Induction on the derivation. 2

Lemma 18 If Γ ` t : ρ is a parameter-free derivation, then there is an n
such that Γ̃ ` t : ρ̃ :: [n]. In particular, any parameter-free derivation can be
transformed into an F×n -derivation, for some n.
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PROOF. Induction on Γ ` t : ρ using Proposition 17 to combine subderiva-
tions with different level n. 2

4 Recursion on the Tree Classes

We show that recursion on the first n + 1 tree classes can be expressed in
F×n+1. The tree classes characterise the functions provably recursive in systems
of iterated inductive definitions [13]. This in particular shows one direction of
the desired equivalence: Non-parametric polymorphic types are strong enough
to define all functions provably recursive in by finitely iterated inductive def-
initions.

The zeroth tree class consists of the empty tree; the first tree class is the set
of natural numbers; the second tree class is the set of trees branching over the
natural numbers; and, in general, the (n + 1)’st tree class is the set of trees
branching over the n’th tree class.

The systems On formalise the (n + 1)’st tree class. The types of system On

are the simple types, built upon the base types O0, . . . ,On for the first up to
the (n+1)’st tree class. The terms of system On are the simply typed λ-terms
built upon the following typed constants.

Every tree class is equipped with a constant 0` of type O` to be interpreted
as the empty tree and a constant S` allowing to construct non-empty trees.
S0 is the usual successor on the natural numbers and has type O0 → O0. The
constants S`+1 have type (O` → O`+1) → O`+1. So, if f is a term of type
O` → O`+1, then S`+1f is a term of type O`+1. We should think of S`+1f as a
non-empty tree, where the immediate subtrees are enumerated by f. Moreover,
for every type ρ and every ` there is a constant R`,ρ embodying the iteration
principle on O` for type ρ.

For the natural numbers we have constants of type ρ → (ρ → ρ) → O0 → ρ
and the following equations.

R0,ρst0
0 = s

R0,ρst(S0r) = t(R0,ρstr)

For the higher tree classes, iteration does not only involve a single “previous
value” but a whole family of such, more precisely one “previous value” for
every subtree. This family is given as a function. So the iterators R`+1,ρ have

6



type ρ → ((O` → ρ) → ρ) → O`+1 → ρ and enjoy the following equalities

R`+1,ρst0
`+1 = s

R`+1,ρst(S`+1r) = t((R`+1,ρst) ◦ r)

where we used the abbreviation s ◦ t ≡ λx.s(tx) with x a “new” variable.

These term systems can be implemented in our fragments of system F in the
same way as the Church numerals [6] are the usual implementation of natural
numbers in the lambda-calculus. The idea is that an object is implemented by
its own iteration principle.

More formally, we define the F×n+1-type On of tree ordinals of the n+1 number
class by induction on n as follows.

O0 = N = ∀α.(α → α) → α → α

On+1 = ∀α.((On → α) → α) → α → α

We define the zero constructors to be 0` = λxy.y and easily verify that they
can have type O`. Moreover, we define the usual successor S0 = λnxy.x(nxy)
which can have typeN → N and the successor functions for the higher number
classes S`+1 = λfxy.x(λz.fzxy) which can have type (O` → O`+1) → O`+1.

As our encodings of the tree classes are equipped with their own iteration
principles we can define the iterators quite uniformly as R`,ρ = λyxn.nxy. It
should be noted that these iterators can have the respective types. With that
definition the following β-equalities (denoted by ∼) hold.

R0,ρst0
0 ∼ 00ts ∼ s

R0,ρst(S0r) ∼ S0rts ∼ t(rts) ∼ t(R0,ρstr)

R`+1,ρst0
`+1 ∼ 0`+1ts ∼ s

R`+1,ρst(S`+1r) ∼ S`+1rts ∼ t(λz.rzts) ∼ t(λz.R`+1,ρst(rz))

≡ t((R`+1,ρst) ◦ r)

5 Stratified Second-Order Arithmetic

We now recall systems HA2
n that are known to have strength of n−1 iterated

inductive definitions. They are given by a restriction of the language. In HA2
n

we allow n nested second order quantifiers, each assigned an individual level.
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Universal formulae ∀Xk.A(Xk) may be instantiated with arbitrary formulae
of the language, as long as the formula obtained belongs to the restricted
language.

Definition 19 (L0) The language of arithmetic, denoted by L0, consists of
the relation symbol = for equality and function symbols for all primitive re-
cursive functions.

The logical connectives are those of the negative fragment, that is, there is an
additional nullary relation symbol ⊥, the junctors ∧ and →, and universal
quantification ∀.

We use the usual notation n for the n’th numeral, that is, if n is a natural
number then n is short for S(S(. . . (S︸ ︷︷ ︸

n

0))).

Moreover, we use the common abbreviations ¬A for A → ⊥, A∨B for ¬(¬A∧
¬B), and ∃xA for ¬∀x¬A. It should, however, be noted that our system will
be based on minimal logic. Therefore ⊥ will have no special meaning at all,
and, consequently, the connectives ¬, ∨, ∃ will behave differently than their
classical counterparts.

Definition 20 (basic axioms) The basic axioms of arithmetical theories are
the following.

• The equality axioms t = t, s = t → t = s, s = t → t = r → s = r and
~t = ~s → f~t = f~s, for arbitrary function symbols f.

• St = 0 → ⊥
• The defining equations for the primitive recursive function symbols. We have

f~t = 0, if f is the function symbol for the n-ary zero, f~t = ti+1, if f is the
function symbol for the i’th projection, f0~t = g~t and f(Sx)~t = hx(fx~t)~t if f is
the function symbol for the function built by primitive recursion from g and
h, and f~s = g(h1~s) . . . (hn~s), if f is the function symbol for the composition

of g and ~h.

Definition 21 (Language of Second Order Arithmetic) The language of
second order arithmetic is that of arithmetic, extended by set variables X,
which can be used to form new atomic expressions Xt for X a set variable and
t a term, and universal quantification over set variables.

We use X(t) as an abbreviation for Xt. Again, we use the abbreviation ∃XA
to denote ¬∀X¬A. We use A to range over formulae with a distinguished
first-order variable. If A is A with x as distinguished variable we denote by
B[X:=A] the formula B with each (free) occurrence of an atom X(t) replaced
(in a capture avoiding way) by A[x:=t].
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When displaying some variables in a formula, as in A(x) and B(X) we dis-
tinguish those variables in these formulae. Once variables are distinguished,
we use expressions like A(t) and B(A) to denote the obvious substitutions
A[x:=t] and B[X:=A].

Definition 22 (HA2) The system HA2 of second-order arithmetic is based
on second-order minimal predicate logic in the language of second order arith-
metic. The axioms are the basic axioms of arithmetical theories (Definition 20).
The rules of the system are introduction and elimination of second order quan-
tifiers in the following form

Γ ` A(X) X not free in Γ

Γ ` ∀XA(X)

Γ ` ∀XA(X)

Γ ` A(A)

and the rules of first-order minimal logic.

We assume a fixed assignment of levels 0, 1, . . . to all second-order variables
except for a distinguished one, X̂. Let Xi range over second order variables
of level i. We assume that there are infinitely many second order variables of
every level. The predicate Nx uses a second order variable of level 0, that is,
we have Nx ≡ ∀X0.∀x(X0x → X0(S(x))) → X00 → X0x.

Definition 23 (I2
n, I∗n) By induction on n we define sets I2

n[X̂] of formulae
of second order arithmetic as follows.

• I2
0 [X̂] is the set of all first-order L0[X̂]-formulae.

• I2
n+1[X̂] is the first-order closure (conjunction, implication, first-order uni-

versal quantification) of L0[X̂] ∪ {∀XnA[X̂:=Xn] | A ∈ I2
n[X̂]}.

We write I2
n for the set of all I2

n[X̂]-formulae without free second-order vari-
ables and I2

n[Xn] for {A[X̂:=Xn] | A ∈ I2
n[X̂]}. Moreover, we define the sets

I∗n =
⋃

k≤n I2
k [Xk] with the reading that each of the Xk in the union should

range over all the second order variables of level k.

Obviously we have I∗n ⊂ I∗n+1. It should be noted that X00 ∧ X10 is not a
formula of any I∗n; nor is X00 ∧ ∀X0.(X00 → X00).

Definition 24 (HA2
n) The system HA2

n is defined to be the fragment of HA2,
where all occurring formulae are in I∗n.

Our sets I2
n[Xn] are closed under substitution. More precisely, by simple in-

duction on A one shows

Lemma 25 If A(Xn),A ∈ I2
n[Xn] then A(A) ∈ I2

n[Xn].

Remark 26 Note that in Lemma 25 it was crucial that the free second order
variable of A is of level n. Substitution in free variables of too low level might
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lead to illegal formulae. Consider for example A(X1) ≡ X10∧∀X0.X00 → X00
and A ≡ X0. Then A(A) is the non well-formed expression X00∧ ∀X0.X00 →
X00.

Lemma 27 HA2
1 ` N0.

Lemma 28 HA2
1 ` ∀x(Nx → N(Sx)).

Definition 29 (HA2
n,(k)) The system HA2

n,(k) is defined to be HA2
n extended

by the axiom scheme

∀x(A(x) → A(Sx)) → A(0) → ∀xA(x)

for every Π0
k-formula A, possibly with parameters.

Remark 30 (Coding) In particular, HA2
n,(0) is HA2

n plus induction for all

∆0
0-formulae. This contains all the equations of Primitive Recursive Arithmetic

and, in particular, coding is available. Hence arguments can be formalised in
the usual way, even if coding is needed. We note that all the properties of
beta-equality mentioned in Remark 7 are provable in HA2

0,(1).

The interest in the systems HA2
k,(n) lies in the following result.

Theorem 31 (Aehlig [1]) Let n and k be a natural number and R(·, ·) a
primitive recursive relation. Then the following are equivalent, where IDn is
the system formalising n iterated inductive definitions.

(i) IDn ` ∀x∃yR(x, y)
(ii) For some natural number e it is the case that IDn ` ∀xR(x, {e} (x)) and

this statement is to be read that in particular IDn ` ∀x∃y. {e} (x) = y.
(iii) HA2

n+1 ` ∀x.Nx → ¬∀y(Ny → ¬R(x, y))
(iv) HA2

n+1,(k) ` ∀x.Nx → ¬∀y¬R(x, y)

6 Normalisation Proof

The standard computability predicates for F×n -types can be formalised in
HA2

n,(1). Hence we obtain a proof of normalisation. This yields an upper bound
on the strengths of non-parametric polymorphism.

Definition 32 For each F×n+1-type ρ a formula Φρ(x) ∈ I+
n+1, called the com-
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putability predicate of type ρ, by induction on ρ as follows.

Φα`(x) = ∃y.y ∼ x ∧ X`y

Φρ×σ(x) = Φρ(pẋLq) ∧ Φσ(pẋRq)

Φρ→σ(x) = ∀y.Φρ(y) → Φσ(pẋẏq)

Φ∀α`.ρ(x) = ∀X`Φ
ρ(x)

Remark 33 Recalling that ∃ is an abbreviation for ¬∀¬ a simple induction
on the type shows that all formulae Φρ enjoy stability provably in HA2

n+1.

As we have built in β-equality in the base case of our computability predicates,
they are invariant under β-equality. More precisely we have

Lemma 34 For every F×n+1-type ρ

HA2
n+1,(1) ` x ∼ y → Φρ(x) → Φρ(y).

PROOF. Induction on ρ using the properties of ∼ , as summarised in Re-
mark 7. 2

Due to the technical trick of building in β-equality in the base case of our
computability predicates they do not preserve substitution. But at least, the
formulae are provably equivalent.

Lemma 35 For F×n+1-types ρ and σ

HA2
n+1,(1) ` Φρ(t)[X`:=Φσ] ↔ Φρ[α`:=σ](t).

PROOF. Induction on ρ. The only case that is not immediate from the
induction hypotheses is the base case. Here we have to show within HA2

n+1,(1)

that ∃y.y ∼ t ∧ Φσ(y) and Φσ(t) are equivalent. This follows from Lemma 34
and Remark 33. 2

Lemma 36 If ~x : ~ρ ` t : ρ is a F×n∗+1-derivation then

HA2
n∗+1,(1) ` ∀~x.Φρ1(x1) → . . . → Φρn(xn) → Φρ(pt(~̇x)q).

PROOF. By induction on ~x : ~ρ ` t : ρ we construct a derivation in HA2
n∗+1,(1).

The variable rule is trivial.
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If . . . ` λxt : ρ → σ was concluded from . . . , x : ρ ` t : σ we have HA2
n∗+1,(1) `

∀~x . . . → Φρ(x) → Φσ(pt(ẋ, ~̇x)q) by induction hypothesis. We have to show

HA2
n∗+1,(1) ` ∀~x . . . → (∀x.Φρ(x) → Φσ(p(λxt(x, ~̇x))ẋq)). This can be derived

by first order logic and Lemma 34 since p(λxt(x, ~̇x)ẋq ∼ pt(ẋ, ~̇x)q holds.

The cut rule is proved by a logical cut and ∀-introduction by the introduction
rule for second order quantifiers. The ×-elimination rules follow by logic (via
∧-elimination).

If . . . ` 〈t; s〉 : ρ× σ was concluded from . . . ` t : ρ and . . . ` s : σ we have

by the induction hypotheses that HA2
n∗+1,(1) ` ∀~x. . . . → Φρ(pt(~̇x)q) and

HA2
n∗+1,(1) ` ∀~x. . . . → Φσ(ps(~̇x)q). We have to show HA2

n∗+1,(1) ` ∀~x. . . . →
Φρ(p

〈
t(~̇x); s(~̇x)

〉
Lq)∧Φσ(p

〈
t(~̇x); s(~̇x)

〉
Rq). Since p

〈
t(~̇x); s(~̇x)

〉
Lq ∼ pt(~̇x)q and

p
〈
t(~̇x); s(~̇x)

〉
Rq ∼ ps(~̇x)q the claim follows from Lemma 34.

If . . . ` t : ρ[α:=σ] was concluded from . . . ` t : ∀αρ we have by induc-

tion hypothesis HA2
n∗+1,(1) ` ∀~x . . . → ∀X0.Φ

ρ(pt(~̇x)q)). We have to show

HA2
n∗+1,(1) ` ∀~x . . . → Φρ[α:=σ](pt(~̇x)q). This follows from the elimination rule

for second order quantifiers and the equivalence shown in Lemma 35. 2

Lemma 37 Provably in HA2
1,(1), the formula

ΦN (ptq) ≡ ∀X0.∀y.(∀z.Φα0(z) → Φα0(pẏżq)) → (∀z.Φα0(z) → Φα0(ptẏżq))

implies ¬∀n¬(ptfsq ∼ pfṅsq) where f and s are fresh (syntactic) variables.

PROOF. The syntactical equivalence is immediate from the definition. For
the implication we argue informally within HA2

1,(1). We specialise X0x to

¬∀n¬(x ∼ pfṅsq) where f and s are fresh syntactical variables. We write
Φ∗ for the result of the substitution on Φα0 and specialise y to pfq. We note
that ∀z.Φ∗(z) → Φ∗(pfżq), so we get ∀z.Φ∗(z) → Φ∗(ptfżq). Now we instan-
tiate z to psq. Furthermore we note Φ∗(psq). Hence we have Φ∗(ptfsq), that
is,

¬∀y¬(y ∼ ptfsq ∧ ¬∀n¬(y ∼ pfṅsq))

So the claim follows from the reflexivity and transitivity of ∼ by minimal
logic. 2

Next we show that, provably in HA2
1,(1), all Church numerals are inhabitants

of N = ∀α0.(α0 → α0) → α0 → α0. More precisely we have

Lemma 38 HA2
1,(1) ` ∀n.Nn → ΦN (pcṅq).
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PROOF. We argue informally in HA2
1,(2). Let n be given and use the induc-

tion principle provided by the assumption Nn. We have to show ΦN (pλxy.yq)
and ΦN (pcṅq) → ΦN (pcṅ+1q).

Concerning the first claim, we have to show for arbitrary X0 and y under the
assumption ∀z.Φα0(z) → Φα0(pẏżq) that ∀z.Φα0(z) → Φα0(p(λxy.y)ẏżq). We
have p(λxy.y)ẏżq ∼ pżq, and hence by Lemma 34 also the claimed implication
Φα0(z) → Φα0(p(λxy.y)ẏżq).

Concerning the second claim assume ∀X0.∀y.(∀z.Φα0(z) → Φα0(pẏżq)) →
(∀z.Φα0(z) → Φα0(pcṅẏżq)). We have to show for arbitrary X0 and y under
the assumption ∀z.Φα0(z) → Φα0(pẏżq) that ∀z.Φα0(z) → Φα0(pcṅ+1ẏżq). So
for an arbitrary z assume Φα0(z). We have to show Φα0(pcṅ+1ẏżq). From the
first assumption we get Φα0(pcṅẏżq), hence by (∀z.Φα0(z) → Φα0(pẏżq)) we
get Φα0(pẏ(cṅ+1ẏż)q). Since pẏ(cṅẏż)q ∼ pcṅ+1ẏżq, we obtain the claim using
Lemma 34. 2

Lemma 39 If ∅ ` t : N → N is an F×n+1-derivation then

HA2
n+1,(1) ` ∀n.Nn → ∃m.ptcṅfsq ∼ pfṁsq.

PROOF. Assume ∅ ` t : N → N . Then by Lemma 36 we obtain HA2
n+1,(1) `

∀z.ΦN (z) → ΦN (ptżq) and by Lemma 38 we get HA2
n+1,(1) ` ∀n.Nn →

ΦN (ptcṅq). So Lemma 37 yields the claim. 2

Corollary 40 If ∅ ` t : N → N is a F×n+1-derivation then t denotes a function
on Church numerals provably total in IDn.

PROOF. Assume ∅ ` t : N → N . By Lemma 39 we have HA2
n+1 ` ∀n.Nn →

∃m.ptcṅfsq ∼ pfṁsq. Hence the claim follows by Theorem 31. 2

The special case n = 0 of the above corollary is the theorem of Altenkirch and
Coquand [2].

7 Lambda-Terms as notations for Proofs

In this section we show that the connection between proofs in restricted
second-order arithmetic and realising lambda-terms in our fragment of system

13



F is a very tight one. In fact, a canonical notation of the proof as a lambda-
term already is the desired lambda-term computing the function whose totality
is claimed.

Since we lack a constructive existential quantifier we have to deal with “∀¬∀¬”-
proofs, that is, after instantiation to the input, we obtain a proof of absurdity
from the assumption ∀y.Ny → R(k, y) → ⊥. An investigation of normal such
proofs will reveal that in fact an incorrect instance of this assumption has
been used. In other words, the proof of Ny that is provided to this assumption
is the result of the function. We will use this assumption to pass the answer
through. So when assigning types to formulae we have to assign to atoms (or
at least to the atom ⊥) the type N of natural numbers. This idea has been
used by various authors [4,7].

We denote the level of the second order variable X by {{X}}. As usual the type
N of Church numerals is defined as N = ∀α0.(α0 → α0) → α0 → α0.

We also assume a canonical enumeration of the object variables of F. In this
subsection we will write xn for variable number 2n and yn for variable num-
ber 2n + 1. Note that we do not need any assumption on the types of these
variables, as our variables are type-free.

Definition 41 By induction on the buildup of formulae we define the realizing
type {{A}} of a formula A as follows.

• {{⊥}} = {{R~t }} = N = ∀α0.(α0 → α0) → α0 → α0

• {{A ∧B}} = {{A}} × {{B}}, {{A → B}} = {{A}} → {{B}}, and {{∀xA}} = {{A}}
• {{Xt}} = α{{X}}+1 and {{∀XA}} = ∀α{{X}}+1{{A}}

Remark 42 For the later development it is not essential which type we use for
arithmetical atoms, as long as it is closed and contains at most one quantifier
(to ensure type-correctness of the obtained terms). So we could as well have
used the empty type ∀αα. However, as discussed in the introduction, it is
essential that we use N for the atom ⊥ in order to be able to pass the answer
through that atom.

Proposition 43 If A ∈ I2
n∗ then {{A}} is an F×n∗+1-type.

The next definition just reflects the usual annotation of derivations in second-
order arithmetic by lambda-terms. We will later (in Theorem 63) see, that
this canonical decoration with only minor changes is already a realizing term.

Definition 44 For t a term, A a formula, and Γ a context, that is, a finite
set of pairs x`:A of variables from {x` | ` ∈ N} and formulae such that every
variable occurs at most once left of the colon, we define the Σ0

1-relation t �
Γ ` A inductively as follows.
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• yi � Γ ` A if A is an axiom and i the natural number such that {{A}} =
N → . . .︸ ︷︷ ︸

i

→ N . Note that {{A}} necessarily has to have a type of this shape,

as can be seen from Definition 20.
• x � x:A, Γ ` A.
• If t � x:A, Γ ` B then λxt � Γ ` A → B.
• If r � Γ ` A → B and s � Γ ` A then rs � Γ ` B.
• If t � Γ ` A with x not free in Γ then t � Γ ` ∀xA.
• If t � Γ ` ∀xA(x) then t � Γ ` A(s).
• If t � Γ ` A ∧B then tL� Γ ` A and tR� Γ ` B.
• If t � Γ ` A and s � Γ ` B then 〈t; s〉 � Γ ` A ∧B.
• If t � Γ ` A with X not free in Γ then t � Γ ` ∀XA.
• If t � Γ ` ∀XA(X) then t � Γ ` A(A).

Proposition 45 (Weakening) If t � Γ ` A and Γ′ ⊃ Γ then t � Γ′ ` A.

Proposition 46 If HA2
n∗ proves a formula A from some assumptions ~A then

for some term t ∈ F×n∗+1 it holds that t � ~x: ~A ` A.

Remark 47 If t � ~x: ~A ` A then the free variables of the term t are among
{~x} ∪ {yi | i ∈ N}.

Proposition 48 If t � ~x: ~A ` A then t has (in the sense of Definition 10)
type {{A}} in the context

x1:{{A1}}, . . . , xn:{{An}}, yi1 :N → . . .︸ ︷︷ ︸
i1

→ N , . . . , yik :N → . . .︸ ︷︷ ︸
ik

→ N

where i1, . . . , in are the “arities” of the used axioms.

We use σ to range over first-order substitutions and Σ to range over second
order substitutions.

Proposition 49 If t � ~x: ~A ` A then t � ~x: ~Aσ ` Aσ and t � ~x: ~AΣ ` AΣ.
Moreover, the number of inferences in the derivation is not changed.

Proposition 50 (Removal of undecorated redexes) If t � Γ ` A then
there is a derivation of this judgement without redexes which are not reflected
in the term t. In other words, there is a derivation of this judgement where
no elimination follows immediately an introduction of a (first or second order)
quantifier.

The next lemma can be understood as part of a proof that N is a data type
in the sense of Krivine’s [9] system AF2.

Lemma 51 If xkz � x:∀x.Xx → X(Sx), z:X0 ` Xt then t = k.
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PROOF. Induction on k. Using Proposition 50 we may assume that the
derivation of xkz � x:∀x.Xx → X(Sx), z:X0 ` X` does not contain any un-
decorated redexes.

In the case k = 0 the assumption X0 cannot be instantiated further and
therefore is the conclusion, hence ` = 0. In the case k = k′ +1 the assumption
∀x.Xx → X(Sx) must have been instantiated in such a way that the atoms
X(Sx) and Xt coincide. So t must be of the form t = St′ and the assumption
was instantiated to t′. Then xk′

z � x:∀x.Xx → X(Sx), z:X0 ` Xt′ and we are
done by the induction hypothesis. 2

Proposition 52 If t � Γ, x:B ` A and s � ∆ ` B then it is the case that
t[x:=s] � Γ, ∆ ` A.

Corollary 53 If (λxt)s � Γ ` A then t[x:=s] � Γ ` A.

PROOF. Using Proposition 50 we may assume that the derivation of (λxt)s �
Γ ` A does not contain any undecorated redex. As applications occur only as
decorations of cut, the abstraction λxt must be the decoration of a →-formula,
concluded by an →-introduction (since we have no undecorated redexes). So
we can apply Proposition 52. 2

Proposition 54 If 〈t; s〉L � Γ ` A then t � Γ ` A and if 〈t; s〉R � Γ ` A
then s � Γ ` A.

Corollary 55 (Subject reduction) If F×n∗+1 is weakly normalising and t �
Γ ` A then there is a term t′ which is normal and β-equal to t such that
t′ � Γ ` A.

Lemma 56 If there is a normal derivation of s = t with at most open as-
sumptions ending in ⊥ then s = t holds.

PROOF. Induction on the proof figure shows that none of the assumptions
has been used: The conclusion is an equation, not the atom ⊥, and hence
cannot be concluded immediately from one of the assumptions. So an axiom
was used. Inspection of the axioms (Definition 20) shows that again only
equations occur negatively. The induction also shows that only quantifier-free
formulae occur. Defining ∆0

0-truth predicates for those formulae shows that
the conclusion is true. 2

Remark 57 The following argument constitutes a semantical proof of
Lemma 56: Note that the axioms and assumptions become true if we inter-
pret ⊥ as truth (which is possible since we work in minimal logic only). All
conclusions therefore have to be true.

16



However, in order to formalise this argument in our meta-theory PRA, we
have to get a bound on the logical complexity of the occurring formulae (in
fact, we even need that all occurring formulae are ∆0

0), as is done in the above
proof. As a side-effect we obtain that none of the assumptions has been used,
which might be of independent interest.

Lemma 58 Every normal derivation r � z:∀y.Ny → R(t, y) → ⊥ ` ⊥ has
the shape, that ⊥ was obtained by instantiating the assumption ∀y.Ny →
R(t, y) → ⊥ to a term s (and proofs of Ns and R(t, s)). Moreover, for that
term R(s, t) holds.

PROOF. Inspection of the axioms (Definition 20) shows that the only axiom
which ⊥might have been concluded from is St′ = 0 → ⊥. This would require a
normal proof of St′ = 0 from assumptions ending in ⊥, which cannot exist by
Lemma 56. Hence the assumption ∀y.Ny → R(t, y) → ⊥ must have been used
and instantiated to a term s and normal proofs of Ns and R(t, s). Lemma 56
yields that R(t, s) holds. 2

Proposition 59 For every k it holds that ck � ∅ ` Nk.

Proposition 60 Every closed normal term of F×n∗+1 of type N is η-equal to
a numeral.

PROOF. As the term is closed (and no products occur in the type) it has to
start with a λ-abstraction and thus is of the form λxt. By the same argument,
the term either is λx.x, which is η-equal to c1, or is of the form λxy.t′. Induction
on t′ shows that it is of the form t′ = xky for some k. 2

Lemma 61 Every normal proof t � Γ, x:∀x.Xx → X(Sx), z:X0 ` Xs, where
the context Γ contains only formulae ending in ⊥, uses neither an axiom nor
an assumption of the context Γ.

PROOF. Induction on the proof figure. No axiom or formula in Γ ends in
Xs, hence one of the last two assumptions has been used. The claim is trivial,
if the last assumption has been used. If the other assumption has been used,
we conclude by induction hypothesis, since the only subformula occurring
negatively is again of the form Xs. 2

The following corollary shows that, in order to prove that a particular term
is a numeral, the proof itself has to be that particular numeral. That is, for
our proofs we have the stricter property than the usual, that the proof of a
witness just has to be big enough [11, p.241].
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Corollary 62 If t � Γ ` Ns for some normal term t and some context Γ
with formulae ending in ⊥, then for some ` it is the case that t = c` and
s = `.

PROOF. Using Proposition 50 we conclude that the last rule of the deriva-
tion must have been ∀X-introduction and the two rules before that must have
been →-introductions. Hence t′ � Γ, x:∀x.Xx → X(x + 1), z:X0 ` Xs where
t = λxz.t′. By Lemma 61 we conclude that the free variables of t′ are among
{x, y}. Hence t is a closed term of type N , so by Proposition 60 a numeral,
and we are in the situation of Lemma 51. 2

Theorem 63 Suppose F×n+1 is weakly normalising. If HA2
n ` ∀x.Nx → ¬∀y(Ny →

¬R(x, y)) then there is a t ∈ F×n+1 computing this function on Church numer-
als, that is, for every n the term tcn reduces to a Church numeral c` and R(n, `)
holds.

Moreover, if t̃ is the canonical decoration of such a derivation, that is, if t̃ �
∅ ` ∀x.Nx → ¬∀y(Ny → ¬R(x, y)), then λx(t̃x(λz′z′′.z′)) is a possible such t
computing the function on Church numerals.

PROOF. From HA2
n ` ∀x.Nx → ¬∀y(Ny → ¬R(x, y)) we get by Proposi-

tion 46 a term r with r � x:Nx, y:∀y(Ny → ¬R(x, y)) ` ⊥. For every k we
have r[x:=ck] � y:∀y(Ny → ¬R(k, y)) ` ⊥, using Propositions 49, 59 and 52.

By Lemma 55 and proposition 50 we get a normal derivation of this statement
with β-equal decoration r′.

By Proposition 58 we know that r′ has the form r′ = yt′s where t′ �
y:∀y(Ny → ¬R(k, y)) ` Nt̂ and R(k, t̂) holds. Moreover, by Corollary 62 we
know that, for some natural number `, it is the case that t̂ = ` and t′ = c`.

So we found a realizing term: λx.r[y:=λz′z′′.z′]. Note that as r we could have
also used t̃xy in t̃ is a canonical decoration of the initial proof. This shows the
second claim. 2

Remark 64 It is worth noting that in the proof of Theorem 63 it is the proof
figure that is used as a program where for the axioms variables are plugged
in. So all the axioms have no “computational content” whatsoever, as they
are completely discarded during the computation. Still the precise choice of the
axioms was important to ensure correctness of the computed result.
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