A Finite Semantics of Simply-Typed Lambda Terms
for Infinite Runs of Automata

Klaus Aehlig

Mathematisches Institut
Ludwig-Maximilians-Universiat Miinchen
Theresienstr. 39, 80333 iMchen, Germany

aehlig@math.lImu.de

Abstract. Model checking properties are often described by means of finite au-
tomata. Any particular such automaton divides the set of infinite trees into finitely
many classes, according to which state has an infinite run. Building the full type
hierarchy upon this interpretation of the base type gives a finite semantics for
simply-typed lambda-trees.

A calculus based on this semantics is proven sound and complete. In particular,
for regular infinite lambda-trees it is decidable whether a given automaton has a
run or not. As regular lambda-trees are precisely recursion schemes, this decid-
ability result holds for arbitrary recursion schemes of arbitrary level, without any
syntactical restriction. This partially solves an open problem of Knapik, Niwinski
and Urzyczyn.

1 Introduction and Related Work

The lambda calculus has long been used as a model of computation. Restricting it to
simple types allows for a particularly simple set-theoretic semantics. The drawback,
however, is that only few functions can be defined in the simply-typed lambda calcu-
lus. To overcome this problem one can, for example, add fixed-point combinatats

every type, or allow infinitary lambda terms. The latter is more flexible, as we can al-
ways syntactically unfold fixed points, paying the price to obtain an infinite, but regular,
lambda-tree.

Finite automata are a standard tool in the realm of model checking [10]. They pro-
vide a concrete machine model for the properties to be verified. In this article we com-
bine automata, and hence properties relevant for model checking, with the infinitary
simply-typed lambda calculus, using the fact that the standard set theoretic semantics
for the simple types has a free parameter — the interpretation of the base type.

More precisely, we consider the following problem.

Given a, possibly infinite, simply-typed lambda-treef base type, and given
a non-deterministic tree automat@n Does2l have a run on the normal form
of t?

The idea is to provide a “proof” of a run &f on the normal form of by annotating
each subterm of with a semantical value describing how this subterm “looks, as seen

2 Klaus Aehlig

by 2(”. Since, in the end, all the annotations turn out to be out of a fixed finite set, the
existence of such a proof is decidable.

So, what does a lambda-tree look like, if seen by an autom@fot the base
type, a lambda-tree denotes an infinite term. Hence, flitmpoint of view, we have to
distinguish for which states there is an infinite run starting in this particular state.

Since we are interested in model checking terms of base type only, we can use any
semantics for higher types, as long as it is adequate, that is, sound and complete. So we
use the most simple one available, that is, the full set-theoretic semantics with the base
type interpreted as just discussed. This yields a finite set as semantical realm for every
type.

As an application of the techniques developed in this article, we show that for arbi-
trary recursion schemes it is decidable whether the defined tree has a property express-
ible by an automaton with trivial acceptance condition. This gives a partial answer to
an open problem by Knapik, Niwinski and Urzyczyn [5].

Infinitary lambda-trees were also considered by Knapik, Niwinski and Urzyczyn [4],
who also proved the decidability of the Monadic Second Order (MSO) theory of trees
given by recursion schemes enjoying a certain “safety” condition [5]. The fact, that the
safety restriction can be dropped at level two has been shown by Aehlig, de Miranda
and Ong [2], and, independently, by Knapik, Niwinski, Urzyczyn and Walukiewicz [6].
The work of the former group also uses implicitly the idea of a “proof” that a particular
automaton has a run on the normal form of a given infinite lambda-tree.

Recently [9] Luke Ong showed simultaneously and independently that the safety
restriction can be dropped for all levels and still decidability for the full MSO theory is
obtained. His approach is based on game semantics and is technically quite involved.
Therefore, the author believes that his approach, due to its simplicity and straight for-
wardness, is still of interest, despite showing a weaker result. Moreover, the novel con-
struction of a finite semantics and its adequacy even in a coinductive setting seem to be
of independent interest.

2 Preliminaries

Let X’ be a set ofettersor terminals We usef to denote elements df’. Each terminal
f is associated aarity §(f) € N.

Definition 1. DefineX = X’ U{R, 8} with R, 8 two new terminals of arity one.

Definition 2. For A a set of terminals, a\-term is a, not necessarily well-founded, tree
labelled with elements oft where every node labelled wifthast(f) many children.

Example 3.Let X' = {f,g,a} with £, g anda of arities2, 1, and0, respectively.
Figure 1 shows twd’-terms.

Let 2 be a fixed nondeterministic tree automaton with state(end transition
functiond: Q x ¥ — P((Q U {x})V) whereN = max{4(g) | g € X'} is the maximal
arity andé(q, g) € Q4@ x {«x}N~#9) whenever; € Q andg € X.

In other words, le®l be a nondeterministic tree automaton that workssterms.

A Finite Semantics. .. for Infinite Runs of Automata 3

Definition 4. We say tha®l has a run up to leveh, if it has a run that goes at least till
all nodes with distance at mostfrom the root.

We write®(, ¢ =" t to denote tha®l has a run
ont up to leveln starting in state;. We write
A, ¢ =>° t to denote tha®(has aninfinite run on
t starting in state;. Since there are only finitely
many ways to extend a run of lengthto one of
lengthn + 1, by Konig’'s Lemma we obtain that
A, q == tifand only if Vn.2l, ¢ =" t.

NS

v —0Q —0]

© —0Q —0Q —03 —09

W‘W‘OQ‘OQ‘UQ‘OQ‘OQ‘OQ‘OQ>—A

Example 5.Continuing Example 3 consider the
property

“Every maximal chain of letterg has
even length”.

A\
A

©

It can be expressed by an automaton with two
states) = {q¢2, ¢1} whereg, means that an even
number ofgs has been passed on the path so far,
where ¢; means that the maximal chain gb
passed has odd length. Then the initial staigis
Fig. 1. Two {f, g, a}-terms. and the transition function is as follows.

v —09
W‘UQ—UQ>H

6(f,q2) = {(q2,92) } 5(f,q1) =0
6(g,q2) = {(q1,%)} 3(g,q1) = {(q2,%)}
(2, q2) = {(x,%)} 6(a,q) =10

This automaton can be extended to workXtrees by setting(q, R) = d(q, 8) =
{(g,*)}. Note that this automaton has an infinite run on the second tree in Figure 1,
whereas it has a run only up to leviebn the first one.

Definition 6. The simple typesdenoted by, o, 7, are built from the base typeby
arrowsp — o. The arrow associates to the right. In particular, — ¢ is short for

pr— (p2 = (oo (pn = 1)),

Definition 7. Infinitary simply-typed lambda-treaesser typed terminals.’ are coin-
ductively given by the grammar

rs =l | (PO | (1078 |

In other words, they are, not-necessarily well founded, trees built, in a locally type
respecting way, from unarkz”-nodes, binaryd-nodes representing application, and
leaf nodes consisting of typed variablesof type p and typed constanfse X of type
L— ... — L — L.
#(5)

Here \z” binds free occurrences of the variab¥ein its body. Trees with all vari-
ables bound are calledlosed

A lambda-tree with only finitely many non-isomorphic subtrees is catigdlar.

4 Klaus Aehlig

We omit type superscripts if they are clear from the context, or irrelevant.

We usually leave out the words “simply typed”, tacitly assuming all our lambda-
trees to be simply typed and to use terminals frbfronly. Figure 2 shows two regular
lambda-trees. Arrows are used to show where the pattern repeats, or to draw isomorphic
subtrees only once. Note that they denote terms (shown in Figure 1) that are not regular.
Here, by “denote” we mean therm readingof the normal form.

Axr a
Q@
T~
Q Q
N
f T Q
7

Fig. 2. Two regular lambda-trees with denotation being flieg, a}-terms in Figure 1.

Remark 8.1t should be noted that in lambda-trees, as opposeéd-ierms, all constants
and variables, no matter what their type is, occur at leaf positions.

The reason is, that in a lambda-calculus setting the main concept is that of an ap-
plication. This is different from first order terms, where the constructors are the main
concept.

Note that we use lambda-trees to denbteterms. As these are different concepts,
even normal lambda-trees differ from their denotation. For example the lambda-tree

denotes the2’-term /5\ .

g a
3 Recursion Schemes as Means to Define Regular Lambda Trees

The interest in infinitary lambda-trees in the verification community recently arose by
the study of recursion schemes. It could be shown [4, 5] that under a certain “safety”

A Finite Semantics. .. for Infinite Runs of Automata 5

condition the (infinite) terms generated by recursion schemes have decidable monadic
second order theory. For our purpose it is enough to consider recursion schemes as a
convenient means to define regular lambda-trees.

Definition 9. Recursion schemeare given by a set of first order terminal symbols,
simply-typed non-terminal symbols and for every non-termiian equation

N
Fx=e

wheree is an expression of ground type built up from terminals, non-terminals and
the variablesz” by type-respecting application. There is a distinguished non-terminal
symbol S of ground type, called thstart symbal

Definition 10. Each recursion schenaienotesin the obvious way, a partial, in general
infinite, term built from the terminals. Starting from the start symbol, recursively re-
place the outer-most non-terminals by their definitions with the arguments substituted
in appropriately.

Definition 11. To every recursion scheme &ssociateda regular lambda-tree in the
following way. First replace all equatiodsz” = e by
F=\Z.

where the right hand side is read as a lambda term.
Then, starting from the start symbol, recursively replace all non-terminals by their
definitionwithout performing any computations

Remark 12.Immediately from the definition we note that tisenormal form of the
lambda-tree associated with a recursion scheme, when read agémmterm denoted
by that recursion scheme.

S =Fa s =F'(We)
Fz = fz(F(gz)) I};/Zx i ;((9;‘;))(1:‘ (We))

Fig. 3. Two recursion schemes.

Example 13.Figure 3 shows two recursion schemes with non-termidals — ,
F'i(t—1) =6, W:(—1t) =t —,andS,S": «. Their corresponding lambda-
trees are the ones shown in Figure 2. The sharing of an isomorphic sub-tree arises as
both are translations of the same non-termiialAs already observed, these recursion
schemes denote the terms shown in Figure 1.

Remark 14.The notion of a recursion scheme wouldn't change if we allowed
abstractions on the right hand side of the equations; we can always build the closure
and “factor it out” as a new non-terminal. For example, g in the definition ofF”’

in Figure 3 should be thought of as a factored-out closure of a line that originally looked

F'o = f(pa)(F'(Az.p(p1))) -

6 Klaus Aehlig
4 Using Continuous Normalisation

As mentioned in the introduction, we are interested in the question, whiithas a
run on the normal form of some lambda-trie@®©ur plan to investigate this question is
by analysing the term

However, there is no bound on the number of nodesstbft have to be inspected,
and no bound on the number of beta-reductions to be carried out, before the first symbol
of the normal form is determined — if it ever will be. In fact, it may well be that an
infinite simply-typed lambda-tree leaves the normal form undefined at some point.

Whereas the first observation is merely a huge inconvenience, the second observa-
tion makes it unclear what it even is supposed to mean 2&ds a run on the normal
form of t” — if there is no such normal form.

Fortunately, it is long known how to overcome this problem. If we don’t know any
definite answer yet, we just output a “don’t know” constructor and carry on. This idea
is known as “continuous normalisation” [7, 8] and is quite natural [1] in the realm of
the lambda calculus.

Definition 15. Fort, 7 closed infiﬂi)tary simply-typed lambda-trees such thatis of
ground type we define &-termt¢@ ¢ coinductively as follows.

(rs)@t = R(rQ(s, 1))

(Az.r)Q(s, T) = B(r[s/2]QT)

jat =t 1)
Here we used-[s/z] to denote the substitution of for = in r. This substitution is
necessarily capture free ass closed. Byf(T, . .., T,,) we denote the term with label
f at the root andy, ..., T, as itsn children; this includes the case= 0, wheref()

denotes the term consisting of a single ngd8imilar notation is used foR(7") and
B(T). Moreover we used” as a shorthand for@().

Immediately from the definition we notice that, after removing ®@nd 3 con-
structors,r@7” is the term reading of the normal form e, whenever the latter is
defined.

The number of3 constructors counts the number of reductions necessary to reach a
particular letter of the normal form [1]. Therefof#,can talk not only about properties
of the normal form ot, but also about the computation that led there.

It should be noted that no price has to be paid for this extra expressivity. Given an
automaton orE’ we can extend its transition functiarby settingd(¢, R) = 6(q, 3) =

{(g,*,...,%)}.

5 Finitary Semantics and Proof System

The main technical idea of this article is to use a finite semantics for the simple types,
describing how(“sees” an object of that type.

A Finite Semantics. .. for Infinite Runs of Automata 7

Definition 16. Forr a simple type we defing] inductively as follows.

b =%Q
I — o] = Vo]

In other words, we start with the powerset of the state s&tiofthe base case, and use
the full set theoretic function space for arrow-types.

Remark 17.0Obviously all the7] are finite sets.

Example 18.Taking the automato® of Example 5, we havg] = {0, {¢2}, {a1 }, Q}
and examples of elements pf— (] include the identity functiorid, as well as the
“swap function”swap defined byswap(0) = 0, swap(Q) = Q, swap({¢2}) = {¢1},
andswap({q:}) = {¢2}-

Definition 19. [7] is partially ordered as follows.

— ForR,S €[JwesetRC Siff RC S.
— Forf,g € [p — o] we setf C giff Va € [g].fa C ga.

Remark 20.0Obviously suprema and infima with respectiexist.

We often need the concept “continue withafter reading on& symbol”. We call
this R-lifting. Similar for 3.

Definition 21. For f € [p” — «] we define the litingsR(f), 3(f) € [p’ — 4 as fol-

lows.

R(N(@) ={a|6(a,R) N fa@ x {x} x ... x {x} # 0}

BUH(@) ={ald(g,p)Nfa x{x} x...x {x} #0}
Remark 22.If 2(is obtained from an automaton working &i+terms by setting (¢, R) =
0(q,08) ={(q,*,...,x)} thenR(f) = B(f) = f forall f.

Using this finite semantics we can use it to annotate a lambda-tree by semantical
values for its subtrees to show that the denoted term has good properties with respect to
2. We start by an example.

Example 23.The second recursion scheme in Figure 3 denotes a term where the “side
branches” contaig, 4,8, ...,2",... times the letteg. As these are all even numbers,
2 should have a run when startingga

So we start by assigning the rof»} € [i]. Since the term is an application, we
have to guess the semantics of the argument (of typer). Our (correct) guess is, that
it keeps the parity ogs unchanged, hence our guesglisthe function side then must
be something that mapé to {¢.}. Let us denote by +— {¢} the function in*—4[;]
defined by(id — {g2})(id) = {g2} and(id — {g2})(f) = 0 if f #id.

The next node to the left is an abstraction. So we have to assign the body the value
{g2} in a context where> is mapped tad. Let us denote this context by,.

In a similar way we fill out the remaining annotations. Figure 4 shows the whole
proof. Herel’; is the context that mapg to swap; moreoverl, .., I, ., I', .+, and
I} . are the same ak, and 7, but with z mapped to{g. } and{q: }, respectively.

It should be noted that a similar attempt to assign semantical values to the other
lambda-tree in Figure 2 fails at the down-mesivhere in the context” with I'(z) =
{g2} we cannot assign the value{q; }.

8 Klaus Aehlig

id — {q2} ~/\‘go @
Iy = {Q2} /‘@

’ Iy = {g2} — {g2}
|

I, +id and I, - id |

Ty - {g2} and Falp/,z F{g2}
’ : /\ F%z/ = {ql} and F%x/ = {ql}
id — id and swap +— id p @

i /_ oot {g} and I, F {q:}

I, tid and I, + swap ¢ x| lewF{a} and I .+ {g}

I, Fid and I, ./ F swap -
! F%I [{QQ} and F%m [{qz}
Ipw E{q} and I, .o = {q1}

Fig. 4. A proof that?l has an infinite run starting iq» on the denoted term.

To make the intuition of the example precise, we formally define a “proof system”
of possible annotationd", a) for a (sub)tree. Since tHe| are all finite sets, there are
only finitely many possible annotations.

To simplify the later argument on our proof, which otherwise would be coinductive,
we add a leveh to our notion of proof. This level should be interpreted as “for up to
steps we can pretend to have a proof”. This reflects the fact that coinduction is nothing
but induction on observations.

Definition 24. For I" a finite mapping from variables” to their corresponding seman-
tics[o], a valuea € [p], andt an infinitary, maybe open, lambda-tree of typevith free
variables amondom(I"), we define

' aCt:p
by induction on the natural numberas follows.

- I'3 a Ct: palways holds.

— I'F} a C z; : pholds, providedi C I'(z;).

— I'Fy™ a C st : o holds, provided there exists € [p — o], u € [p] such that
aCR(fu), 'y fCs:p—o,andl'Fyul t:p.

— I'ytt f C AzP.s 0 p — o holds, provided for alk € [o] there is &, € [o] such
that fa C B(b,) andI? F3 b, C s : 0.

—~ 'ty fEf:u— ... — ¢ — ¢ holds, provided for alla’ € ['] we havefa C
{g (g, 1) Nar x ... xayg) x {x} x ... x {x} #0}.

A Finite Semantics. .. for Infinite Runs of Automata 9

It should be noted that all the quantifiers in the rules range over finite sets. Hence the
correctness of a rule application can be checked effectively (and even by a finite au-
tomaton).

We writeI" =¥ a C ¢ : ptodenotevn.I' Fy a Tt : p.

Remark 25.0bviously I" =3 a C ¢ : p implies I' - a C ¢ : p. Moreover,a’ C
andI'Fg aCt:pimplyI'Fy o Tt:p.Finally,'=5 aCt:p, if I"Fy aCTt:
for somel™” which agrees with” on the free variables af

a
P

As already mentioned, fara term with finitely many free variables, the annotations
(I',a) come from a fixed finite set, since we can restfidb the set of free variables of
t. If, moreoverit has only finitely many different sub-trees, that is to say,js#fregular,
then only finitely many termshave to be considered. So we obtain

Proposition 26. For ¢ regular, it is decidable whethel" -3¢ a T ¢ : p.

Before we continue and show our calculus in Definition 24 to be sound (Section 6)
and complete (Section 7) let us step back and see what we will then have achieved, once
our calculus is proven sound and complete.

Proposition 26 gives us decidability for terms denoted by regular lambda-trees, and
hence in particular for trees obtained by recursion schemes. Moreover, since the anno-
tations only have to fit locally, individual subtrees of the lambda-tree can be verified
separately. This is of interest, as for each non-terminal a separate subtree is generated.
In other words, this approach allows for modular verification; think of the different
non-terminals as different subroutines. As the semantics is the set-theoretic one, the an-
notations are clear enough to be meaningful, if we have chosen our automaton in such
a way that the individual states can be interpreted extensionally, for example as “even”
versus “odd” number ofs.

It should also be noted, that the number of possible annotations only depends on
the type of the subtree, and 8f that is, the property to be investigated. Fixiigand
the allowed types (which both usually tend to be quite small), the amount of work to
be carried out grows only linearly with the representation @ a regular lambda-tree.

For every node we have to make a guess and we have to check whether this guess is
consistent with the guesses for the (at most two) child nodes. Given that the number of
nodes of the representation tofjrowth linearly with the size of the recursion scheme,

the problem is in fixed-parametdfP, which doesn’t seem too bad for practical appli-
cations.

6 Truth Relation and Proof of Soundness

The soundness of a calculus is usually shown by using a logical relation, that is, a
relation indexed by a type that interprets the type arrew’ ‘as logical arrow ="; in
other words, we define partial truth predicates for the individual types [11].

Since we want to do induction on the “observation deptbf our proof- -3 - C - : 7
we have to include that depth in the definition of our truth predicates; - : 7. For
technical reasons we have to build in weakening on this depth as well.

10 Klaus Aehlig

Definition 27. For f € [p" — 1, n € N, t a closed infinitary lambda tree of type
o —u, therelationf <2 ¢ : p” — ¢ is defined by induction on the type as follows.

f=ot:p —u iff
Ve<nva €[pVT i p
(Vi.a; <5 ri:pi) = Vg€ fa. A q =" tQr

Remark 28.Immediately from the definition we get the following monotonicity prop-
erty.
If fC fandf < t:pthenf < t: p.

Remark 29.In the special casg’ = ¢ we get
S <Gt iff Vge S, q =" 18
Here we used that! < n. 2, q |=* siff A, q =" s.
Immediately from the definition we obtain weakening in the level.
Proposition 30. If f <& t: pthenf <p~' ¢ : p.
Theorem 31. Assumel” Fy a C t : p for somel” with domain{zy, ...
¢ < nand all closed termg : 7', if Vi. I'(;) <& ti: p, thena <4 t]

,x2}. For all
?/?} 2 p.
Proof. Induction omn, cases accordingtb - a C ¢ : p.

We just show the case of therule. The other cases are similar, and even simpler.

Casel' ;™' f C AxP.s: p — o thanks toVa € [p] 3b, € [o] such thatfa C
B(be) andl’y 5 b T s : 0.

Let? <n + 1 be given andt - P with I'(z;) <& i« pi.

We have to show <4 (Azfs”)n : p — o wheren is short for[¢ /Z].

Let o have the formo = & — 1. Letk < fbegivenand : p, s : o, c € [g],
¢; € [o7] such thate <& 7 : p, ¢; <& s, : 0;. We have to show for alj € fcc’ that
A q =X (\es)n@r, 5.

—_————

B.sn; Qs

Hence it suffices to show that there i§ & §(¢, 3) such tha®l, § =F—1 snr @7,

We know c <& r:p; using Proposition 30 we get «5(1 r:p and
Vi. I'(x;) «’5[1 t; : p;. Sincek < £ < n+ 1 we getk — 1 < n, hence we may
apply the induction hypothesis 13? - b, T s : o and obtairb, «’5{1 SNyt o.

Since again by Proposition 30 we also know«’;l‘l s; = o;, we obtain for all
G €b,c that?l, ¢ =+ sn2Q75 .

Sincefc C (B(b.) we getthat/q € fcc 3G € 6(q, 8). G € b. ¢ . This, together with
the last statement yields the claim.

It should be noted that in the proof of Theorem 31 in the cases of-tiude and the

application-rule it was possible to use the induction hypothesis due to the fact that we
usedcontinuousnormalisation, as opposed to standard normalisation.

Corollary 32. For ¢ a closed infinitary lambda term we get immediately from Theo-
rem 31
DrFp SCt:r = VgeS AqE"t?

In particular, if) F5° S C ¢ : . thenVg € S. A, g > tP.

A Finite Semantics. .. for Infinite Runs of Automata 11

7 The Canonical Semantics and the Proof of Completeness

If we want to prove that there is an infinite run, then, in the case of an applic#tion
we have to guess a value for the terficut out”.

We could assume an actual run be given and analyse the “communication”, in the
sense of game semantics [3], between the funcatiand its argument. However, it is
simpler to assign each term a “canonical semantig¢¥s ., roughly the supremum of
all values we have canonical proofs for.

The subscripto signifies that we only consider infinite runs. The reason is that the
leveln in our proofs!” 3 a T t : p is not a tight bound; whenever we have a proofs
of level n, then there are runs for at leaststeps, but on the other hand, runs might
be longer than the maximal level of a proof. This is due to the fact fhaduction
moves subterms “downwards”, that is, further away from the root, and in that way may
construct longer runs. The estimates in our proof calculus, however, have to consider
(in order to be sound) the worst case, that is, that an argument is used immediately.

Since, in general, the termmay also have free variables, we have to consider a
canonical semanticét)) 5. with respect to an environmeit

Definition 33. By induction on the type we define fér closed infinite lambda-tree of
typep = p — ¢ its canonical semanticé))a € [p] as follows.

(thao(@) ={g1F57: 7. (3 Nas T @ A q > tQs})
Remark 34.Fort a closed term of base type we hai)s.. = {q | 2,q == t°}.

Definition 35. For I" a contextf: p typed in contextl” of typep = p° — « we define
(thi . € [p] by the following explicit definition.

{(thaise (@) = {a | In. dom(n) = dom(I")A
(Vz € dom(I").n(x) closedA (n(z)hac = I'(x)) A
357 (5 ae E@ A Aq > Q)

Remark 36.Fort a closed term and = () we have((t)] = (t)aoo-

Proposition 37. If s has typea — ¢ in some context compatible withi, and) is
some substitution withom () = dom(I") such that for allx € dom(I") we have)(x)
closed and(n(x))aeo T I'(x), then

{smhaace E (N atoo

Proof. Let @ € [0] andgq € {(sn)as(a’) be given. Then there are’: & with
{3 Maso T @ such tha®l, ¢ => sn@s . Together with the assumed properties;of
this witnesseg € ((s)4 (@').

Lemma 38. If » and s are terms of typer — p — ¢ and o, respectively, in some
context compatible witli’, then we have

(rshatse © RN 200 (5)100)

12 Klaus Aehlig

Proof. Let @ € [p]andq € (rs)_ (@) be given. Then there ig with Vz €
dom(I). {(n(z))aee T I'(x) and there ar&”: p’ with (5)aso = @ and
A q > (rs)n@’s’
N——
R.rnQsn,s
Hence thereis @ € §(q, R) with 2, ¢’ |=°° rn@sn, s . It suffices to show that for
this ¢’ we havey’ € ((r)go. () oo @ -
By Proposition 37 we havésn) e = (s) . and we already havés oo T

r —

a . So the givem together withsn and’s” witnessesy’ € (r)5 . ()i a .
Lemma 39. Assume thahz.r has typer — 5 — ¢ in some context compatible with

I'. Then .

(Aer)iise(a) C B({(r)ais)
Proof. Let @’ € [p] andq € (Azr)_ (a, @) be given. Then there is am with
Yz € dom(I") we haven(z) closed and(n(z))as C I'(x) and there ar@, s with
{sNo100 C a and({(s Mo C @ such that

A q B> (Aer)n@s,
N————
Boralsin@s

So there is @ € (g, 8) with 2, § => r.[s]n@ . It suffices to show tha§ e

(rae(@):
By the properties of) and since((s))a. T a we know that for ally € dom(I)
a)

we have((n(y))ase T I(y). This witnesse§ € ()4 (@).
Lemma 40. (z)4 C I'(z)
Theorem 41. I' F3 () Ct:p

Proof. Induction onn, cases on. Trivial for n = 0. So letn. > 0. We distinguish cases
according ta. The casess, Ax.r andx are immediately from the induction hypotheses
and Lemmata 38, 39, and 40, respectively.
So, lett = f be a terminal symbol. We have to shaw-23 (f)5.. C§:¢— ¢
So, letS € [7’]andg € () hs(S). Hence there is are” of type. with ((s;) aioo T
S; and2l, q =>° Q7.
—~—

(")

So there is(qi, .- ., dyf)s *,-- -, %) € (g, f) with 2, g; = 7. But theng; €
{{sidatco C Si.
Corollary 42. If ¢: . is closed and of ground type thén-5 {g |2, ¢ E> t°} Ct: .

Finally, let us sum up what we have achieved.
Corollary 43. Fort a closed regular lambda term, and € Q it is decidable whether
9'[7 q0 ':OO tﬁ
Proof. By Proposition 26 it suffices to show th&t-3° {go} C ¢ : « holds, if and only
if A, qo > t7.

The “if"-direction follows from Corollary 42 and the weakening provided by Re-
mark 25. The “only if"-direction is provided by Corollary 32.

A Finite Semantics. .. for Infinite Runs of Automata 13
8 Model Checking

Formulae of Monadic Second Order Logic can be presented [10] by appropriate tree
automata. As mentioned, we consider here only a special case. More precisely, let
be a property that can be recognised by a non-deterministic tree automaton with trivial
acceptance condition, that is, an automaton accepting by having an infinite run. In other
words, lety be such that there is an automagdpsuch thatl = ¢ < A, q0 == T
holds for everyY’-tree7 .

Applying the theory developed above to this setting we obtain the following.

Theorem 44. Given a tree7 defined by an arbitrary recursion scheme (of arbitrary
level) and a property that can be recognised by an automaton with trivial acceptance
condition it is decidable whethéF = ¢.

Proof. Lett be the infinite lambda-tree associated with the recursion schemezThen
effectively given as a regular closed lambda term of ground typeZaigithe normal
form of ¢.

Let 2L, be the automaton (with initial statg) describingy. By keeping the state
when reading & or 3 it can be effectively extended to an automagothat works on
the continuous normal form, rather than on the usual ond. $0 ¢ < A, gy == t°.
The latter, however, is decidable by Corollary 43.

Remark 45.As discussed after Proposition 26 the complexity is fixed-parameter non-
deterministic linear time in the size of the recursion scheme, if we congided the
allowed types as a parameter.

References

1. K. Aehlig and F. Joachimski. On continuous normalizationPfaceedings of the Annual
Conference of the European Association for Computer Science Logic (CSLv)djne
2471 ofLecture Notes in Computer Scienpages 59-73. Springer Verlag, 2002.

2. K. Aehlig, J. G. d. Miranda, and C. H. L. Ong. The monadic second order theory of trees
given by arbitrary level-two recursion schemes is decidable. In P. Urzyczyn, é&tivaeed-
ings of the 7th International Conference on Typed Lambda Calculi and Applications (TLCA
'05), volume 3461 ofLecture Notes in Computer Sciengages 39-54. Springer-Verlag,
Apr. 2005.

3. J. M. E. Hyland and C.-H. L. Ong. On full abstraction for P@fformation and Computa-
tion, 163(2):285-408, Dec. 2000.

4. T.Knapik, D. Niwihski, and P. Urzyczyn. Deciding monadic theories of hyperalgebraic trees.
In S. Abramsky, editorProceedings of the 5th International Conference on Typed Lambda
Caculi and Applications (TLCA '01Volume 2044 of_ecture Notes in Computer Science
pages 253-267. Springer Verlag, 2001.

5. T. Knapik, D. Niwihski, and P. Urzyczyn. Higher-order pushdown trees are easy. In M. Niel-
son, editorProceedings of the 5th International Conference Foundations of Software Science
and Computation Structures (FOSSACS ,0&)lume 2303 ofLecture Notes in Computer
Sciencepages 205-222, Apr. 2002.

14

6.

10.

11.

Klaus Aehlig

T. Knapik, D. Niwiski, P. Urzyczyn, and I. Walukiewicz. Unsafe grammars, panic automata,
and decidability. In L. Caires, G. F. Italiano, L. Monteiro, C. Palamidessi, and M. Yung,
editors,32nd International Colloquium on Automata, Languages and Programming (ICALP
'05), volume 3580 of.ecture Notes in Computer Scienpages 1450-1461. Springer Verlag,
2005.

. G. Kreisel, G. E. Mints, and S. G. Simpson. The use of abstract language in elementary

metamathematics: Some pedagogic examples. In R. Parikh, dditpc, Colloquium vol-
ume 453 ofLecture Notes in Mathematicgages 38-131. Springer Verlag, 1975.

. G. E. Mints. Finite investigations of transfinite derivatiodsurnal of Soviet Mathematics

10:548-596, 1978. Translated from: Zap. Nauchn. Semin. LOMI 49 (1975). Cited after
Grigori Mints. Selected papers in Proof TheoStudies in Proof Theory. Bibliopolis, 1992.

. C.-H. L. Ong. On model-checking trees generated by higher-order recursion schemes. In

Proceedings of the Twentyfrist Annual IEEE Symposium on Logic in Computer Science (LICS
'06), 2006. to appear.

M. O. Rabin. Decidability of second-order theories and automata on infinite Theesac-

tions of the American Mathematical Society1:1-35, July 1969.

W. W. Tait. Intensional interpretations of functionals of finite typpee Journal of Symbolic
Logic, 32(2):198-212, 1967.

