
A Finite Semantics of Simply-Typed Lambda Terms
for Infinite Runs of Automata

Klaus Aehlig

Mathematisches Institut
Ludwig-Maximilians-Universiẗat München
Theresienstr. 39, 80333 M̈unchen, Germany

aehlig@math.lmu.de

Abstract. Model checking properties are often described by means of finite au-
tomata. Any particular such automaton divides the set of infinite trees into finitely
many classes, according to which state has an infinite run. Building the full type
hierarchy upon this interpretation of the base type gives a finite semantics for
simply-typed lambda-trees.
A calculus based on this semantics is proven sound and complete. In particular,
for regular infinite lambda-trees it is decidable whether a given automaton has a
run or not. As regular lambda-trees are precisely recursion schemes, this decid-
ability result holds for arbitrary recursion schemes of arbitrary level, without any
syntactical restriction. This partially solves an open problem of Knapik, Niwinski
and Urzyczyn.

1 Introduction and Related Work

The lambda calculus has long been used as a model of computation. Restricting it to
simple types allows for a particularly simple set-theoretic semantics. The drawback,
however, is that only few functions can be defined in the simply-typed lambda calcu-
lus. To overcome this problem one can, for example, add fixed-point combinatorsYσ at
every type, or allow infinitary lambda terms. The latter is more flexible, as we can al-
ways syntactically unfold fixed points, paying the price to obtain an infinite, but regular,
lambda-tree.

Finite automata are a standard tool in the realm of model checking [10]. They pro-
vide a concrete machine model for the properties to be verified. In this article we com-
bine automata, and hence properties relevant for model checking, with the infinitary
simply-typed lambda calculus, using the fact that the standard set theoretic semantics
for the simple types has a free parameter — the interpretation of the base type.

More precisely, we consider the following problem.

Given a, possibly infinite, simply-typed lambda-treet of base type, and given
a non-deterministic tree automatonA. DoesA have a run on the normal form
of t?

The idea is to provide a “proof” of a run ofA on the normal form oft by annotating
each subterm oft with a semantical value describing how this subterm “looks, as seen

2 Klaus Aehlig

by A”. Since, in the end, all the annotations turn out to be out of a fixed finite set, the
existence of such a proof is decidable.

So, what does a lambda-tree look like, if seen by an automatonA? At the base
type, a lambda-tree denotes an infinite term. Hence, fromA’s point of view, we have to
distinguish for which states there is an infinite run starting in this particular state.

Since we are interested in model checking terms of base type only, we can use any
semantics for higher types, as long as it is adequate, that is, sound and complete. So we
use the most simple one available, that is, the full set-theoretic semantics with the base
type interpreted as just discussed. This yields a finite set as semantical realm for every
type.

As an application of the techniques developed in this article, we show that for arbi-
trary recursion schemes it is decidable whether the defined tree has a property express-
ible by an automaton with trivial acceptance condition. This gives a partial answer to
an open problem by Knapik, Niwinski and Urzyczyn [5].

Infinitary lambda-trees were also considered by Knapik, Niwinski and Urzyczyn [4],
who also proved the decidability of the Monadic Second Order (MSO) theory of trees
given by recursion schemes enjoying a certain “safety” condition [5]. The fact, that the
safety restriction can be dropped at level two has been shown by Aehlig, de Miranda
and Ong [2], and, independently, by Knapik, Niwinski, Urzyczyn and Walukiewicz [6].
The work of the former group also uses implicitly the idea of a “proof” that a particular
automaton has a run on the normal form of a given infinite lambda-tree.

Recently [9] Luke Ong showed simultaneously and independently that the safety
restriction can be dropped for all levels and still decidability for the full MSO theory is
obtained. His approach is based on game semantics and is technically quite involved.
Therefore, the author believes that his approach, due to its simplicity and straight for-
wardness, is still of interest, despite showing a weaker result. Moreover, the novel con-
struction of a finite semantics and its adequacy even in a coinductive setting seem to be
of independent interest.

2 Preliminaries

Let Σ′ be a set oflettersor terminals. We usef to denote elements ofΣ′. Each terminal
f is associated anarity](f) ∈ N.

Definition 1. DefineΣ = Σ′ ∪ {R, β} with R, β two new terminals of arity one.

Definition 2. For∆ a set of terminals, a∆-term is a, not necessarily well-founded, tree
labelled with elements of∆ where every node labelled withf has](f) many children.

Example 3.Let Σ′ = {f, g, a} with f, g and a of arities 2, 1, and0, respectively.
Figure 1 shows twoΣ′-terms.

Let A be a fixed nondeterministic tree automaton with state setQ and transition
functionδ : Q×Σ → P((Q ∪ {∗})N) whereN = max{](g) | g ∈ Σ} is the maximal
arity andδ(q, g) ⊂ Q](g) × {∗}N−](g) wheneverq ∈ Q andg ∈ Σ.

In other words, letA be a nondeterministic tree automaton that works onΣ-terms.

A Finite Semantics. . . for Infinite Runs of Automata 3

Definition 4. We say thatA has a run up to leveln, if it has a run that goes at least till
all nodes with distance at mostn from the root.

f
�@
a f

�@
g f

a
�@
g

g

a

...

f
�@
g

g

a

f
�@
g

g

g

g

a

f
�@
g

g

g

g

g

g

g

g

a

...

Fig. 1.Two {f, g, a}-terms.

We writeA, q |=n t to denote thatA has a run
on t up to leveln starting in stateq. We write
A, q |=∞ t to denote thatA has aninfinite run on
t starting in stateq. Since there are only finitely
many ways to extend a run of lengthn to one of
lengthn + 1, by König’s Lemma we obtain that
A, q |=∞ t if and only if ∀n.A, q |=n t.

Example 5.Continuing Example 3 consider the
property

“Every maximal chain of lettersg has
even length”.

It can be expressed by an automaton with two
statesQ = {q2, q1} whereq2 means that an even
number ofgs has been passed on the path so far,
where q1 means that the maximal chain ofgs
passed has odd length. Then the initial state isq2

and the transition function is as follows.

δ(f, q2) = {(q2, q2)} δ(f, q1) = ∅
δ(g, q2) = {(q1, ∗)} δ(g, q1) = {(q2, ∗)}
δ(a, q2) = {(∗, ∗)} δ(a, q1) = ∅

This automaton can be extended to work onΣ-trees by settingδ(q,R) = δ(q, β) =
{(q, ∗)}. Note that this automaton has an infinite run on the second tree in Figure 1,
whereas it has a run only up to level3 on the first one.

Definition 6. The simple types, denoted byρ, σ, τ , are built from the base typeι by
arrowsρ → σ. The arrow associates to the right. In particular,−→ρ → ι is short for
ρ1 → (ρ2 → (. . . (ρn → ι) . . .)).

Definition 7. Infinitary simply-typed lambda-treesover typed terminalsΣ′ are coin-
ductively given by the grammar

r, s ::= xρ | (λxρtσ)ρ→σ | (tρ→σsρ)σ | fι→...→ι→ι .

In other words, they are, not-necessarily well founded, trees built, in a locally type
respecting way, from unaryλxρ-nodes, binary@-nodes representing application, and
leaf nodes consisting of typed variablesxρ of typeρ and typed constantsf ∈ Σ′ of type
ι → . . . → ι︸ ︷︷ ︸

](f)

→ ι.

Hereλxρ binds free occurrences of the variablexρ in its body. Trees with all vari-
ables bound are calledclosed.

A lambda-tree with only finitely many non-isomorphic subtrees is calledregular.

4 Klaus Aehlig

We omit type superscripts if they are clear from the context, or irrelevant.
We usually leave out the words “simply typed”, tacitly assuming all our lambda-

trees to be simply typed and to use terminals fromΣ′ only. Figure 2 shows two regular
lambda-trees. Arrows are used to show where the pattern repeats, or to draw isomorphic
subtrees only once. Note that they denote terms (shown in Figure 1) that are not regular.
Here, by “denote” we mean theterm readingof the normal form.

@
@�
aλx

@
PPP�

@

@�
f x

@
HH

@

�@
g x

�*

@
�

PPP
@

@
g

λϕ

@
PPP�

@

@�
f

@
HH

@

�@
ϕ

@

@�
ϕ a λϕ

λx

@

�@
ϕ @

�@
ϕ x

�*

@I

Fig. 2.Two regular lambda-trees with denotation being the{f, g, a}-terms in Figure 1.

Remark 8.It should be noted that in lambda-trees, as opposed toΣ′-terms, all constants
and variables, no matter what their type is, occur at leaf positions.

The reason is, that in a lambda-calculus setting the main concept is that of an ap-
plication. This is different from first order terms, where the constructors are the main
concept.

Note that we use lambda-trees to denoteΣ′-terms. As these are different concepts,
even normal lambda-trees differ from their denotation. For example the lambda-tree

@
�@

@
�@

a

g a

denotes theΣ′-term
g

�@
a a

.

3 Recursion Schemes as Means to Define Regular Lambda Trees

The interest in infinitary lambda-trees in the verification community recently arose by
the study of recursion schemes. It could be shown [4, 5] that under a certain “safety”

A Finite Semantics. . . for Infinite Runs of Automata 5

condition the (infinite) terms generated by recursion schemes have decidable monadic
second order theory. For our purpose it is enough to consider recursion schemes as a
convenient means to define regular lambda-trees.

Definition 9. Recursion schemesare given by a set of first order terminal symbols,
simply-typed non-terminal symbols and for every non-terminalF an equation

F−→x = e

wheree is an expression of ground type built up from terminals, non-terminals and
the variables−→x by type-respecting application. There is a distinguished non-terminal
symbolS of ground type, called thestart symbol.

Definition 10. Each recursion schemedenotes, in the obvious way, a partial, in general
infinite, term built from the terminals. Starting from the start symbol, recursively re-
place the outer-most non-terminals by their definitions with the arguments substituted
in appropriately.

Definition 11. To every recursion scheme isassociateda regular lambda-tree in the
following way. First replace all equationsF−→x = e by

F = λ−→x .e

where the right hand side is read as a lambda term.
Then, starting from the start symbol, recursively replace all non-terminals by their

definitionwithout performing any computations.

Remark 12.Immediately from the definition we note that theβ-normal form of the
lambda-tree associated with a recursion scheme, when read a term,is the term denoted
by that recursion scheme.

S = Fa

Fx = fx(F (gx))

S′ = F ′(Wg)
F ′ϕ = f(ϕa)(F ′(Wϕ))
Wϕx = ϕ(ϕx)

Fig. 3.Two recursion schemes.

Example 13.Figure 3 shows two recursion schemes with non-terminalsF : ι → ι,
F ′ : (ι → ι) → ι, W : (ι → ι) → ι → ι, andS, S′ : ι. Their corresponding lambda-
trees are the ones shown in Figure 2. The sharing of an isomorphic sub-tree arises as
both are translations of the same non-terminalW . As already observed, these recursion
schemes denote the terms shown in Figure 1.

Remark 14.The notion of a recursion scheme wouldn’t change if we allowedλ-
abstractions on the right hand side of the equations; we can always build the closure
and “factor it out” as a new non-terminal. For example, theWϕ in the definition ofF ′

in Figure 3 should be thought of as a factored-out closure of a line that originally looked

F ′ϕ = f(ϕa)(F ′(λx.ϕ(ϕx))) .

6 Klaus Aehlig

4 Using Continuous Normalisation

As mentioned in the introduction, we are interested in the question, whetherA has a
run on the normal form of some lambda-treet. Our plan to investigate this question is
by analysing the termt.

However, there is no bound on the number of nodes oft that have to be inspected,
and no bound on the number of beta-reductions to be carried out, before the first symbol
of the normal form is determined — if it ever will be. In fact, it may well be that an
infinite simply-typed lambda-tree leaves the normal form undefined at some point.

Whereas the first observation is merely a huge inconvenience, the second observa-
tion makes it unclear what it even is supposed to mean that “A has a run on the normal
form of t” — if there is no such normal form.

Fortunately, it is long known how to overcome this problem. If we don’t know any
definite answer yet, we just output a “don’t know” constructor and carry on. This idea
is known as “continuous normalisation” [7, 8] and is quite natural [1] in the realm of
the lambda calculus.

Definition 15. For t,
−→
t closed infinitary simply-typed lambda-trees such thatt

−→
t is of

ground type we define aΣ-termt@
−→
t coinductively as follows.

(rs)@
−→
t = R(r@(s,

−→
t))

(λx.r)@(s,
−→
t) = β(r[s/x]@

−→
t)

f@
−→
t = f(tβ1 , . . . , tβn)

Here we usedr[s/x] to denote the substitution ofs for x in r. This substitution is
necessarily capture free ass is closed. Byf(T1, . . . , Tn) we denote the term with label
f at the root andT1, . . . , Tn as itsn children; this includes the casen = 0, wheref()
denotes the term consisting of a single nodef. Similar notation is used forR(T) and
β(T). Moreover we usedrβ as a shorthand forr@().

Immediately from the definition we notice that, after removing theR andβ con-
structors,r@−→s is the term reading of the normal form ofr−→s , whenever the latter is
defined.

The number ofβ constructors counts the number of reductions necessary to reach a
particular letter of the normal form [1]. Therefore,A can talk not only about properties
of the normal form oft, but also about the computation that led there.

It should be noted that no price has to be paid for this extra expressivity. Given an
automaton onΣ′ we can extend its transition functionδ by settingδ(q,R) = δ(q, β) =
{(q, ∗, . . . , ∗)}.

5 Finitary Semantics and Proof System

The main technical idea of this article is to use a finite semantics for the simple types,
describing howA “sees” an object of that type.

A Finite Semantics. . . for Infinite Runs of Automata 7

Definition 16. For τ a simple type we define[[τ]] inductively as follows.

[[ι]] = P(Q)
[[ρ → σ]] = [[ρ]][[σ]]

In other words, we start with the powerset of the state set ofA in the base case, and use
the full set theoretic function space for arrow-types.

Remark 17.Obviously all the[[τ]] are finite sets.

Example 18.Taking the automatonA of Example 5, we have[[ι]] = {∅, {q2}, {q1}, Q}
and examples of elements of[[ι → ι]] include the identity functionid, as well as the
“swap function”swap defined byswap(∅) = ∅, swap(Q) = Q, swap({q2}) = {q1},
andswap({q1}) = {q2}.

Definition 19. [[τ]] is partially ordered as follows.

– ForR,S ∈ [[ι]] we setR v S iff R ⊆ S.
– Forf, g ∈ [[ρ → σ]] we setf v g iff ∀a ∈ [[ρ]].fa v ga.

Remark 20.Obviously suprema and infima with respect tov exist.

We often need the concept “continue withf after reading oneR symbol”. We call
thisR-lifting. Similar for β.

Definition 21. For f ∈ [[−→ρ → ι]] we define the liftingsR(f), β(f) ∈ [[−→ρ → ι]] as fol-
lows.

R(f)(−→a) = {q | δ(q,R) ∩ f−→a × {∗} × . . .× {∗} 6= ∅}
β(f)(−→a) = {q | δ(q, β) ∩ f−→a × {∗} × . . .× {∗} 6= ∅}

Remark 22.If A is obtained from an automaton working onΣ′-terms by settingδ(q,R) =
δ(q, β) = {(q, ∗, . . . , ∗)} thenR(f) = β(f) = f for all f .

Using this finite semantics we can use it to annotate a lambda-tree by semantical
values for its subtrees to show that the denoted term has good properties with respect to
A. We start by an example.

Example 23.The second recursion scheme in Figure 3 denotes a term where the “side
branches” contain2, 4, 8, . . . , 2n, . . . times the letterg. As these are all even numbers,
A should have a run when starting inq2.

So we start by assigning the root{q2} ∈ [[ι]]. Since the term is an application, we
have to guess the semantics of the argument (of typeι → ι). Our (correct) guess is, that
it keeps the parity ofgs unchanged, hence our guess isid; the function side then must
be something that mapsid to {q2}. Let us denote byid 7→ {q2} the function in[[ι→ι]][[ι]]
defined by(id 7→ {q2})(id) = {q2} and(id 7→ {q2})(f) = ∅ if f 6= id.

The next node to the left is an abstraction. So we have to assign the body the value
{q2} in a context whereϕ is mapped toid. Let us denote this context byΓϕ.

In a similar way we fill out the remaining annotations. Figure 4 shows the whole
proof. HereΓ ′ϕ is the context that mapsϕ to swap; moreoverΓϕ,x, Γ ′ϕ,x, Γϕ,x′ , and
Γ ′ϕ,x′ are the same asΓϕ andΓ ′ϕ but withx mapped to{q2} and{q1}, respectively.

It should be noted that a similar attempt to assign semantical values to the other
lambda-tree in Figure 2 fails at the down-mostx where in the contextΓ with Γ (x) =
{q2} we cannot assignx the value{q1}.

8 Klaus Aehlig

@
�

PPP
@

@
g

λϕ

@
PPP�

@

@�
f

@
HH

@

�@
ϕ

@

@�
ϕ a λϕ

λx

@

�@
ϕ @

�@
ϕ x

�*

@I

id 7→ {q2} -

Γϕ ` {q2} -

Γϕ ` {q2} 7→ {q2} -

Γϕ ` {q2} 7→ {q2} 7→ {q2} -

Γϕ ` {q2} ���

Γϕ ` id �
��

Γϕ ` {q2} �
�

�
��

id 7→ id and swap 7→ id �
�

�
�

�
��

Γϕ,x ` id and Γ ′
ϕ,x ` swap

Γϕ,x′ ` id and Γ ′
ϕ,x′ ` swap

-���

{q2}�

id�

swap�

Γϕ ` {q2}�

Γϕ ` id�

Γϕ ` id�

Γϕ ` id and Γ ′
ϕ ` id�

Γϕ,x ` {q2} and Γ ′
ϕ,x ` {q2}

Γϕ,x′ ` {q1} and Γ ′
ϕ,x′ ` {q1}

�

Γϕ,x ` {q2} and Γ ′
ϕ,x ` {q1}

Γϕ,x′ ` {q1} and Γ ′
ϕ,x′ ` {q2}

@I

Γϕ,x ` {q2} and Γ ′
ϕ,x ` {q2}

Γϕ,x′ ` {q1} and Γ ′
ϕ,x′ ` {q1}

6

Fig. 4.A proof thatA has an infinite run starting inq2 on the denoted term.

To make the intuition of the example precise, we formally define a “proof system”
of possible annotations(Γ, a) for a (sub)tree. Since the[[τ]] are all finite sets, there are
only finitely many possible annotations.

To simplify the later argument on our proof, which otherwise would be coinductive,
we add a leveln to our notion of proof. This level should be interpreted as “for up ton
steps we can pretend to have a proof”. This reflects the fact that coinduction is nothing
but induction on observations.

Definition 24. ForΓ a finite mapping from variablesxσ to their corresponding seman-
tics [[σ]], a valuea ∈ [[ρ]], andt an infinitary, maybe open, lambda-tree of typeρ, with free
variables amongdom(Γ), we define

Γ `n
A a v t : ρ

by induction on the natural numbern as follows.

– Γ `0
A a v t : ρ always holds.

– Γ `n
A a v xi : ρ holds, provideda v Γ (xi).

– Γ `n+1
A a v st : σ holds, provided there existsf ∈ [[ρ → σ]], u ∈ [[ρ]] such that

a v R(fu), Γ `n
A f v s : ρ → σ, andΓ `n

A u v t : ρ.
– Γ `n+1

A f v λxρ.s : ρ → σ holds, provided for alla ∈ [[ρ]] there is aba ∈ [[σ]] such
thatfa v β(ba) andΓ a

x `n
A ba v s : σ.

– Γ `n
A f v f : ι → . . . → ι → ι holds, provided for all−→a ∈ [[−→ι]] we havef−→a ⊂

{q | δ(q, f) ∩ a1 × . . .× a](f) × {∗} × . . .× {∗} 6= ∅}.

A Finite Semantics. . . for Infinite Runs of Automata 9

It should be noted that all the quantifiers in the rules range over finite sets. Hence the
correctness of a rule application can be checked effectively (and even by a finite au-
tomaton).

We writeΓ `∞A a v t : ρ to denote∀n.Γ `n
A a v t : ρ.

Remark 25.ObviouslyΓ `n+1
A a v t : ρ implies Γ `n

A a v t : ρ. Moreover,a′ v a
andΓ `n

A a v t : ρ imply Γ `n
A a′ v t : ρ. Finally,Γ `n

A a v t : ρ, if Γ ′ `n
A a v t : ρ

for someΓ ′ which agrees withΓ on the free variables oft.

As already mentioned, fort a term with finitely many free variables, the annotations
(Γ, a) come from a fixed finite set, since we can restrictΓ to the set of free variables of
t. If, moreover,t has only finitely many different sub-trees, that is to say, ift is regular,
then only finitely many termst have to be considered. So we obtain

Proposition 26. For t regular, it is decidable whetherΓ `∞A a v t : ρ.

Before we continue and show our calculus in Definition 24 to be sound (Section 6)
and complete (Section 7) let us step back and see what we will then have achieved, once
our calculus is proven sound and complete.

Proposition 26 gives us decidability for terms denoted by regular lambda-trees, and
hence in particular for trees obtained by recursion schemes. Moreover, since the anno-
tations only have to fit locally, individual subtrees of the lambda-tree can be verified
separately. This is of interest, as for each non-terminal a separate subtree is generated.
In other words, this approach allows for modular verification; think of the different
non-terminals as different subroutines. As the semantics is the set-theoretic one, the an-
notations are clear enough to be meaningful, if we have chosen our automaton in such
a way that the individual states can be interpreted extensionally, for example as “even”
versus “odd” number ofgs.

It should also be noted, that the number of possible annotations only depends on
the type of the subtree, and onA, that is, the property to be investigated. FixingA and
the allowed types (which both usually tend to be quite small), the amount of work to
be carried out grows only linearly with the representation oft as a regular lambda-tree.
For every node we have to make a guess and we have to check whether this guess is
consistent with the guesses for the (at most two) child nodes. Given that the number of
nodes of the representation oft growth linearly with the size of the recursion scheme,
the problem is in fixed-parameter-NP, which doesn’t seem too bad for practical appli-
cations.

6 Truth Relation and Proof of Soundness

The soundness of a calculus is usually shown by using a logical relation, that is, a
relation indexed by a type that interprets the type arrow “→” as logical arrow “⇒”; in
other words, we define partial truth predicates for the individual types [11].

Since we want to do induction on the “observation depth”n of our proof· `n
A · v · : τ

we have to include that depth in the definition of our truth predicates· ≺≺n
A · : τ . For

technical reasons we have to build in weakening on this depth as well.

10 Klaus Aehlig

Definition 27. For f ∈ [[−→ρ → ι]], n ∈ N, t a closed infinitary lambda tree of type
−→ρ → ι, the relationf ≺≺n

A t : −→ρ → ι is defined by induction on the type as follows.

f ≺≺n
A t : −→ρ → ι iff

∀` ≤ n∀−→a ∈ [[−→ρ]]∀−→r : −→ρ
(∀i. ai ≺≺`

A ri : ρi) ⇒ ∀q ∈ f−→a . A, q |=` t@−→r
Remark 28.Immediately from the definition we get the following monotonicity prop-
erty.

If f v f ′ andf ′ ≺≺n
A t : ρ thenf ≺≺n

A t : ρ.

Remark 29.In the special case−→ρ = ε we get

S ≺≺n
A t : ι iff ∀q ∈ S.A, q |=n tβ

Here we used that∀` ≤ n. A, q |=` s iff A, q |=n s.

Immediately from the definition we obtain weakening in the level.

Proposition 30. If f ≺≺n
A t : ρ thenf ≺≺n−1

A t : ρ.

Theorem 31. AssumeΓ `n
A a v t : ρ for someΓ with domain{x1, . . . , x2}. For all

` ≤ n and all closed terms
−→
t : −→ρ , if ∀i. Γ (xi) ≺≺`

A ti : ρi thena ≺≺`
A t[

−→
t /−→x] : ρ.

Proof. Induction onn, cases according toΓ `n
A a v t : ρ.

We just show the case of theλ-rule. The other cases are similar, and even simpler.
CaseΓ `n+1

A f v λxρ.s : ρ → σ thanks to∀a ∈ [[ρ]] ∃ba ∈ [[σ]] such thatfa v
β(ba) andΓ a

x `n
A ba v s : σ.

Let ` ≤ n + 1 be given and
−→
t : −→ρ with Γ (xi) ≺≺`

A ti : ρi.
We have to showf ≺≺`

A (λxρsσ)η : ρ → σ whereη is short for[
−→
t /−→x].

Let σ have the formσ = −→σ → ι. Let k ≤ ` be given andr : ρ, −→s : −→σ , c ∈ [[ρ]],
ci ∈ [[σi]] such thatc ≺≺k

A r : ρ, ci ≺≺k
A si : σi. We have to show for allq ∈ fc−→c that

A, q |=k (λxs)η@r,−→s︸ ︷︷ ︸
β.sηr

x@−→s

.

Hence it suffices to show that there is aq̃ ∈ δ(q, β) such thatA, q̃ |=k−1 sηr
x@−→s .

We know c ≺≺k
A r : ρ; using Proposition 30 we getc ≺≺k−1

A r : ρ and
∀i. Γ (xi) ≺≺k−1

A ti : ρi. Sincek ≤ ` ≤ n + 1 we getk − 1 ≤ n, hence we may
apply the induction hypothesis toΓ a

x `n
A ba v s : σ and obtainba ≺≺k−1

A sηr
x : σ.

Since again by Proposition 30 we also knowci ≺≺k−1
A si : σi, we obtain for all

q̂ ∈ ba
−→c thatA, q̂ |=k−1 sηr

x@−→s .
Sincefc v β(bc) we get that∀q ∈ fc−→c ∃q̃ ∈ δ(q, β). q̃ ∈ bc

−→c . This, together with
the last statement yields the claim.

It should be noted that in the proof of Theorem 31 in the cases of theλ-rule and the
application-rule it was possible to use the induction hypothesis due to the fact that we
usedcontinuousnormalisation, as opposed to standard normalisation.

Corollary 32. For t a closed infinitary lambda term we get immediately from Theo-
rem 31

∅ `n
A S v t : ι =⇒ ∀q ∈ S. A, q |=n tβ

In particular, if ∅ `∞A S v t : ι then∀q ∈ S. A, q |=∞ tβ .

A Finite Semantics. . . for Infinite Runs of Automata 11

7 The Canonical Semantics and the Proof of Completeness

If we want to prove that there is an infinite run, then, in the case of an applicationst,
we have to guess a value for the termt “cut out”.

We could assume an actual run be given and analyse the “communication”, in the
sense of game semantics [3], between the functions and its argumentt. However, it is
simpler to assign each term a “canonical semantics”〈〈t〉〉A∞, roughly the supremum of
all values we have canonical proofs for.

The subscript∞ signifies that we only consider infinite runs. The reason is that the
level n in our proofsΓ `n

A a v t : ρ is not a tight bound; whenever we have a proofs
of level n, then there are runs for at leastn steps, but on the other hand, runs might
be longer than the maximal level of a proof. This is due to the fact thatβ-reduction
moves subterms “downwards”, that is, further away from the root, and in that way may
construct longer runs. The estimates in our proof calculus, however, have to consider
(in order to be sound) the worst case, that is, that an argument is used immediately.

Since, in general, the termt may also have free variables, we have to consider a
canonical semantics〈〈t〉〉ΓA∞ with respect to an environmentΓ .

Definition 33. By induction on the type we define fort a closed infinite lambda-tree of
typeρ = −→ρ → ι its canonical semantics〈〈t〉〉A∞ ∈ [[ρ]] as follows.

〈〈t〉〉A∞(−→a) = {q | ∃−→s : −→ρ . 〈〈−→s 〉〉A∞ v −→a ∧ A, q |=∞ t@−→s }

Remark 34.For t a closed term of base type we have〈〈t〉〉A∞ = {q | A, q |=∞ tβ}.

Definition 35. ForΓ a context,t : ρ typed in contextΓ of typeρ = −→ρ → ι we define
〈〈t〉〉ΓA∞ ∈ [[ρ]] by the following explicit definition.

〈〈t〉〉ΓA∞(−→a) = {q | ∃η. dom(η) = dom(Γ)∧
(∀x ∈ dom(Γ).η(x) closed∧ 〈〈η(x)〉〉A∞ v Γ (x)) ∧
∃−→s : −→ρ .〈〈−→s 〉〉A∞ v −→a ∧ A, q |=∞ tη@−→s }

Remark 36.For t a closed term andΓ = ∅ we have〈〈t〉〉ΓA∞ = 〈〈t〉〉A∞.

Proposition 37. If s has type−→σ → ι in some context compatible withΓ , and η is
some substitution withdom(η) = dom(Γ) such that for allx ∈ dom(Γ) we haveη(x)
closed and〈〈η(x)〉〉A∞ v Γ (x), then

〈〈sη〉〉A∞ v 〈〈s〉〉ΓA∞

Proof. Let −→a ∈ [[−→σ]] and q ∈ 〈〈sη〉〉A∞(−→a) be given. Then there are−→s : −→σ with
〈〈−→s 〉〉A∞ v −→a such thatA, q |=∞ sη@−→s . Together with the assumed properties ofη
this witnessesq ∈ 〈〈s〉〉ΓA∞(−→a).

Lemma 38. If r and s are terms of typeσ → −→ρ → ι and σ, respectively, in some
context compatible withΓ , then we have

〈〈rs〉〉ΓA∞ v R(〈〈r〉〉ΓA∞〈〈s〉〉ΓA∞)

12 Klaus Aehlig

Proof. Let −→a ∈ [[−→ρ]] and q ∈ 〈〈rs〉〉ΓA∞(−→a) be given. Then there isη with ∀x ∈
dom(Γ). 〈〈η(x)〉〉A∞ v Γ (x) and there are−→s : −→ρ with 〈〈−→s 〉〉A∞ v −→a and

A, q |=∞ (rs)η@−→s︸ ︷︷ ︸
R.rη@sη,−→s

Hence there is aq′ ∈ δ(q,R) with A, q′ |=∞ rη@sη,−→s . It suffices to show that for
this q′ we haveq′ ∈ 〈〈r〉〉ΓA∞〈〈s〉〉ΓA∞

−→a .
By Proposition 37 we have〈〈sη〉〉A∞ v 〈〈s〉〉ΓA∞ and we already have〈〈−→s 〉〉A∞ v

−→a . So the givenη together withsη and−→s witnessesq′ ∈ 〈〈r〉〉ΓA∞〈〈s〉〉ΓA∞
−→a .

Lemma 39. Assume thatλx.r has typeσ → −→ρ → ι in some context compatible with
Γ . Then

〈〈λxr〉〉ΓA∞(a) v β(〈〈r〉〉Γ
a
x

A∞)

Proof. Let −→a ∈ [[−→ρ]] and q ∈ 〈〈λxr〉〉ΓA∞(a,−→a) be given. Then there is anη with
∀x ∈ dom(Γ) we haveη(x) closed and〈〈η(x)〉〉A∞ v Γ (x) and there ares,−→s with
〈〈s〉〉A∞ v a and〈〈−→s 〉〉A∞ v −→a such that

A, q |=∞ (λxr)η@s,−→s︸ ︷︷ ︸
β.rx[s]η@−→s

So there is ãq ∈ δ(q, β) with A, q̃ |=∞ rx[s]η@−→s . It suffices to show that̃q ∈
〈〈r〉〉Γ

a
x

A∞(−→a).
By the properties ofη and since〈〈s〉〉A∞ v a we know that for ally ∈ dom(Γ a

x)
we have〈〈η(y)〉〉A∞ v Γ a

x (y). This witnesses̃q ∈ 〈〈r〉〉Γ
a
x

A∞(−→a).

Lemma 40. 〈〈x〉〉ΓA∞ v Γ (x)

Theorem 41. Γ `n
A 〈〈t〉〉ΓA∞ v t : ρ

Proof. Induction onn, cases ont. Trivial for n = 0. So letn > 0. We distinguish cases
according tot. The casesrs, λx.r andx are immediately from the induction hypotheses
and Lemmata 38, 39, and 40, respectively.

So, lett = f be a terminal symbol. We have to showΓ `n
A 〈〈f〉〉ΓA∞ v f : ι → ι.

So, let
−→
S ∈ [[−→ι]] andq ∈ 〈〈f〉〉ΓA∞(S). Hence there is are−→s of typeι with 〈〈si〉〉A∞ v

Si andA, q |=∞ f@−→s︸ ︷︷ ︸
f(
−→
sβ)

.

So there is(q̃1, . . . , q̃](f), ∗, . . . , ∗) ∈ δ(q, f) with A, q̃i |=∞ sβ
i . But then q̃i ∈

〈〈si〉〉A∞ ⊂ Si.

Corollary 42. If t : ι is closed and of ground type then∅ `n
A {q | A, q |=∞ tβ} v t : ι.

Finally, let us sum up what we have achieved.

Corollary 43. For t a closed regular lambda term, andq0 ∈ Q it is decidable whether
A, q0 |=∞ tβ .

Proof. By Proposition 26 it suffices to show that∅ `∞A {q0} v t : ι holds, if and only
if A, q0 |=∞ tβ .

The “if”-direction follows from Corollary 42 and the weakening provided by Re-
mark 25. The “only if”-direction is provided by Corollary 32.

A Finite Semantics. . . for Infinite Runs of Automata 13

8 Model Checking

Formulae of Monadic Second Order Logic can be presented [10] by appropriate tree
automata. As mentioned, we consider here only a special case. More precisely, letϕ
be a property that can be recognised by a non-deterministic tree automaton with trivial
acceptance condition, that is, an automaton accepting by having an infinite run. In other
words, letϕ be such that there is an automatonAϕ such thatT |= ϕ ⇔ Aϕ, q0 |=∞ T
holds for everyΣ′-treeT .

Applying the theory developed above to this setting we obtain the following.

Theorem 44. Given a treeT defined by an arbitrary recursion scheme (of arbitrary
level) and a propertyϕ that can be recognised by an automaton with trivial acceptance
condition it is decidable whetherT |= ϕ.

Proof. Let t be the infinite lambda-tree associated with the recursion scheme. Thent is
effectively given as a regular closed lambda term of ground type andT is the normal
form of t.

Let Aϕ be the automaton (with initial stateq0) describingϕ. By keeping the state
when reading aR or β it can be effectively extended to an automatonA that works on
the continuous normal form, rather than on the usual one. SoT |= ϕ ⇔ A, q0 |=∞ tβ .
The latter, however, is decidable by Corollary 43.

Remark 45.As discussed after Proposition 26 the complexity is fixed-parameter non-
deterministic linear time in the size of the recursion scheme, if we considerϕ and the
allowed types as a parameter.

References

1. K. Aehlig and F. Joachimski. On continuous normalization. InProceedings of the Annual
Conference of the European Association for Computer Science Logic (CSL ’02), volume
2471 ofLecture Notes in Computer Science, pages 59–73. Springer Verlag, 2002.

2. K. Aehlig, J. G. d. Miranda, and C. H. L. Ong. The monadic second order theory of trees
given by arbitrary level-two recursion schemes is decidable. In P. Urzyczyn, editor,Proceed-
ings of the 7th International Conference on Typed Lambda Calculi and Applications (TLCA
’05), volume 3461 ofLecture Notes in Computer Science, pages 39–54. Springer-Verlag,
Apr. 2005.

3. J. M. E. Hyland and C.-H. L. Ong. On full abstraction for PCF.Information and Computa-
tion, 163(2):285–408, Dec. 2000.

4. T. Knapik, D. Niwínski, and P. Urzyczyn. Deciding monadic theories of hyperalgebraic trees.
In S. Abramsky, editor,Proceedings of the 5th International Conference on Typed Lambda
Caculi and Applications (TLCA ’01), volume 2044 ofLecture Notes in Computer Science,
pages 253–267. Springer Verlag, 2001.

5. T. Knapik, D. Niwínski, and P. Urzyczyn. Higher-order pushdown trees are easy. In M. Niel-
son, editor,Proceedings of the 5th International Conference Foundations of Software Science
and Computation Structures (FOSSACS ’02), volume 2303 ofLecture Notes in Computer
Science, pages 205–222, Apr. 2002.

14 Klaus Aehlig

6. T. Knapik, D. Niwínski, P. Urzyczyn, and I. Walukiewicz. Unsafe grammars, panic automata,
and decidability. In L. Caires, G. F. Italiano, L. Monteiro, C. Palamidessi, and M. Yung,
editors,32nd International Colloquium on Automata, Languages and Programming (ICALP
’05), volume 3580 ofLecture Notes in Computer Science, pages 1450–1461. Springer Verlag,
2005.

7. G. Kreisel, G. E. Mints, and S. G. Simpson. The use of abstract language in elementary
metamathematics: Some pedagogic examples. In R. Parikh, editor,Logic Colloquium, vol-
ume 453 ofLecture Notes in Mathematics, pages 38–131. Springer Verlag, 1975.

8. G. E. Mints. Finite investigations of transfinite derivations.Journal of Soviet Mathematics,
10:548–596, 1978. Translated from: Zap. Nauchn. Semin. LOMI 49 (1975). Cited after
Grigori Mints.Selected papers in Proof Theory. Studies in Proof Theory. Bibliopolis, 1992.

9. C.-H. L. Ong. On model-checking trees generated by higher-order recursion schemes. In
Proceedings of the Twentyfrist Annual IEEE Symposium on Logic in Computer Science (LICS
’06), 2006. to appear.

10. M. O. Rabin. Decidability of second-order theories and automata on infinite trees.Transac-
tions of the American Mathematical Society, 141:1–35, July 1969.

11. W. W. Tait. Intensional interpretations of functionals of finite type.The Journal of Symbolic
Logic, 32(2):198–212, 1967.

