
Induction and Inductive Definitions in Fragments

of Second Order Arithmetic

Klaus Aehlig∗

Abstract

A fragment with the same provably recursive functions as n iterated
inductive definitions is obtained by restricting second order arithmetic
in the following way. The underlying language allows only up to n + 1
nested second order quantifications and those are in such a way, that no
second order variable occurs free in the scope of another second order
quantifier. The amount of induction on arithmetical formulae only affects
the arithmetical consequences of these theories, whereas adding induction
for arbitrary formulae increases the strength by one inductive definition.

1 Introduction and Related Work

The study of subsystems of second order arithmetic (“Analysis”) has a long
tradition in proof theory. Here we investigate a fragment that is defined by a
restriction of the language. By allowing quantification of a second order variable
only for formulae with at most this second order variable free, we obtain a proof
theoretic weaker fragment. This fragment is motivated by a study of Altenkirch
and Coquand [4] who used the non-nested case to obtain a “finitary subsystem
of the polymorphic lambda calculus”.

The fragment of analysis studied in this article is particularly suited as a
target for the embedding of theories of iterated inductive definitions [1]. Systems
with Π1

1-comprehension have been studied by various authors [15, 9, 8]. An
overview over proof theoretical aspects of inductive definitions can be found in
the lecture notes volume by Buchholz, Feferman, Pohlers and Sieg [7].

The main emphasis of this article is the study of the influence of induction
on the natural numbers on the provably recursive functions of these systems.
Whereas induction for only arithmetical formulae only influences the arithmeti-
cal consequences, induction on arbitrary formulae increases the strength by an
additional inductive definition. A technically similar observation has been made
by Arai [5] when comparing the fast and the slow growing hierarchy.

The rest of this article, which is based on the author’s doctoral thesis [2], is
organised as follows. In Section 2 we define the formal systems under consid-
eration. Sections 3 and 4 successively embed the systems of iterated inductive

∗Mathematisches Institut, Universität München, Theresienstr. 39, 80333 München,
aehlig@matheamtik.uni-muenchen.de. The author was supported by DFG Graduiertenkolleg
301 “Logik in der Informatik” when the research reported here has been carried out.

1

definitions in fragments of second order arithmetic first with, and then, at the
price of an additional quantifier, without induction. Finally in Section 5 a proof
theoretical analysis of the fragments of second order arithmetic is provided, that
can be locally formalised in systems of iterated inductive definitions.

The meta theory for this article is Primitive Recursive Arithmetic, PRA
for short. That is, whenever we claim a theorem to hold, we claim it to hold
provably in PRA. Note that it therefore amounts to a stronger statement to say
that a statement “holds”, rather than just saying it is provable in, say, IDc

1.

2 Definition of the Systems

The language of arithmetic, denoted by L0, consists of a single relation symbol
= for equality and function symbols for all primitive recursive functions. These
are built from function symbols for the constant function zero of every arity
(where we denote the nullary zero by 0), the unary function symbol S for the
successor function and n-ary function symbols for the i’th projection for every
0 ≤ i ≤ n − 1, by arity-respecting composition and primitive recursion. The
intended meaning of these function symbols is formalized in their axiomatization
in Definition 2.2.

For systems based on a language extending that of arithmetic, we use the
usual notation n for the n’th numeral, that is, if n is a natural number then n
is short for S(S(. . . (S︸ ︷︷ ︸

n

0))).

As logical connectives we use those of first order logic: conjunction, implica-
tion, universal quantification and absurdity. Moreover we use the other connec-
tives as abreviations in the usual way, so ¬A ≡ A → ⊥, A ∨B ≡ ¬(¬A ∧ ¬B),
and ∃xA ≡ ¬∀x¬A.

We use A,B,C as notations for formulae. As usual, finite lists of notations
differing only in successive indices are abbreviated by putting an arrow over the
notation for these entities. So, for example, ~t is short for t1, . . . , tn. This may
as well include the empty list, if n = 0. When displaying variables of a formula
as in A(~x) we want to distinguish some of the variables that might occur in A;
after having done so, we use A(~t) as a shorthand for the substitution A [~t /~x].
All our substitutions are assumed to be capture free in the usual sense, which
is, up to α-equivalence, a well-defined notion. We hereby adopt the convention
that we identify α-equal formulae. We also use A, B, A, and B as notations for
formulae, tacitly assuming them to have been displayed as A(x), B(x), A(X, x),
and B(X, x) for some X and x. We use a centred dot · to denote a distinguished
first order variable.

Definition 2.1 (Li, Posi, Negi). Starting from the language L0 of arithmetic
we define languages Li and sets Posi,Negi ⊂ Li[X] of positive and negative
operator forms by induction on i. To do so, we set

Li+1 = Li ∪ {PA
i+1 | A(X, x) ∈ Posi,FV(A) ⊂ {x,X}}

where the PA
i+1 are new predicate symbols (to be understood as the least fixed

point of the operator A) and Posi and Negi are those sets of formulae that
contain X at most positively and at most negatively, respectively.

We use the abbreviation A ⊂ B ≡ ∀x(A(x) → B(x)).

2

Definition 2.2 (basic axioms). The basic axioms of arithmetical theories are
the following.

• The equality axioms t = t, s = t → t = s, s = t → t = r → s = r and
~t = ~s → f~t = f~s, for arbitrary function symbols f.

• St = 0 → ⊥

• The defining equations for the primitive recursive function symbols. We
have f~t = 0, if f is the function symbol for the n-ary zero, f~t = ti+1, if f is
the function symbol for the i’th projection, f0~t = g~t and f(Sx)~t = hx(fx~t)~t
if f is the function symbol for the function built by primitive recursion
from g and h, and f~s = g(h1~s) . . . (hn~s), if f is the function symbol for the
composition of g and ~h.

Remark 2.3 (Injectivity of the successor). Let h be the function symbol
for binary first projection and Pred the function symbol for the function built by
primitive recursion from h and 0. We have the axioms Pred(Sx) = hx(Predx)
and hx(Predx) = x. Hence, by transitivity of equality we have Pred(Sx) = x. In
particular the assumption St = Ss implies Pred(St) = Pred(Ss) which, implies
t = s. So injectivity of the successor is derivable. Note that all these proofs are
based on minimal logic and do not use induction.

Definition 2.4 (IDc
n). The system IDc

n is an extension of Peano Arithmetic
in the language Ln. That is, it is based on classical predicate logic, contains
the basic axioms (equality, 1 6= 0, defining axioms for the primitive recursive
functions) and induction on the full language Ln.

Moreover, for arbitrary formulae F of the language and 0 < i ≤ n the
following axioms are added, which define PA

i as the least fixed point of the
operator A.

• A(PA
i , ·) ⊂ PA

i

• A(F , ·) ⊂ F → PA
i ⊂ F

Definition 2.5 (The negative fragment ID−
n). The system ID−

n is literally
the same as IDc

n, but based on minimal logic; in particular not even ex-falso-
quodlibet is available.

ID−
n is called the “negative fragment”, because all connectives (conjunction,

implication, universal quantification and absurdity) are negative. Recall that
absurdity has no special meaning in minimal logic, but is just an unspecified
nullary junctor. We still use ∃ and ∨ as abbreviations, but keep in mind that
they do not behave as positive connectives.

Definition 2.6 (ID∗
n). We define ID∗

n to be the fragment of the system ID−
n

where all the operators A of the fixed points PA
i are strictly positive in the

second order variable.

Proposition 2.7.
A ∈ Posi ⇒ ID−

n ` A ⊂ B → A(A, ·) ⊂ A(B, ·).
A ∈ Negi ⇒ ID−

n ` A ⊂ B → A(B, ·) ⊂ A(A, ·).

3

Proof. Induction on A. For example, the second statement in the case of “A →
B”: A ∈ Posi, B ∈ Negi, hence (under the assumption A ⊂ B) by the induction
hypotheses for arbitrary x it holds that A(A, x) → A(B, x) and B(B, x) →
B(A, x). Assume A(B, x) → B(B, x) and A(A, x); hence B(A, x) by three
applications of modus ponens.

It should be noted that the proof does not use any axioms. Hence the
statement is even valid in minimal predicate logic. This will be used later (in
Remark 3.12).

Proposition 2.8. ID−
n ` ∀x(A(PA

i , x) ↔ PA
i x).

Proof. We argue within ID−
n and have to show ∀x(PA

i x → A(PA
i , x)). To this

end, we use the second fixed point axiom; hence we have to show A(A(PA
i , ·), x) →

A(PA
i , x) for arbitrary x. Since A(PAi , ·) ⊂ PA

i by the first fixed point axiom,
we are done by monotonicity of A (Proposition 2.7).

Remark 2.9. As obviously ID−
n ⊂ IDc

n, Propositions 2.7 and 2.8 also hold for
the system IDc

n.
Moreover, as the proofs show, they also hold for ID∗

n, provided the formulae
under consideration are in the language of ID∗

n.

Definition 2.10 (HA2). The system HA2 of second order arithmetic is based
on second order minimal predicate logic. Its language is that of arithmetic,
extended by set variables and universal quantification over them. The axioms
are the basic axioms of arithmetical theories (Definition 2.2). The rules of
the system are introduction and elimination of second order quantifiers in the
following form

Γ ` A(X) X not free in Γ
Γ ` ∀XA(X)

Γ ` ∀XA(X)
Γ ` A(A)

and the rules of first order minimal logic.

Since no induction is available, we should think of our universe as also con-
taining objects which are not natural numbers. So we will often need the prop-
erty of being a natural number, that is, the property of being an object for which
the principle of induction holds. This predicate N x is defined in the usual way
as

N x ≡ ∀X.∀y(Xy → X(S(y))) → X0 → Xx

When working in fragments of second order arithmetic we use the abbre-
viation A ⊂ B for ∀x.N x → A(x) → B(x). This differs from the use of this
abbreviation in the systems of iterated inductive definitions. But as these are
different systems, which even have a different language, there is no danger of
confusion. Moreover, as noted in Remark 4.2, up to our canonical embeddings
of ID−

n into HA2 these notions coincide.
Next we will formalise the fragments of HA2 under consideration. We will

define a family of subsystems of second order arithmetic. The restriction will
be a restriction of the language. In HA2

n we will allow n nested, but not “in-
terleaved” (in the sense of Matthes [13]), second order quantifiers, so that no
second order variable is allowed to occur free in the scope of another second
order quantifier.

4

We will also consider the amount of induction for arithmetical formulae as a
second parameter. This parameter, which allows enough coding, will turn out
to be independent of the proof theoretic strength (Theorem 5.27). In fact, it
only affects the arithmetical consequences of these systems (Corollary 5.20).

For technical reasons, it does not suffice to count the nesting depths of
second order variables but we have to use second order variables of different
levels (see especially the proof of Lemma 5.8). However, universal formulae
∀Xk.A(Xk) may be instantiated with arbitrary formulae of the language, as
long as a legal formula is obtained (confer Remark 2.16). Allowing instantiation
to the full language is essential, as in a “predicative version” of this system
only the functions of Grzegorczyk’s [10] class E4 would be obtained as provably
recursive functions [12], and a predicative version restricted to levels 0 and 1
would only yield the Kalmár [11] elementary functions [3].

From now on, we assume a fixed assignment of levels 0, 1, . . . to all second-
order variables except for a distinguished one, X̂. Let Xi range over second
order variables of level i. We assume that there are infinitely many second
order variables of every level. The predicate N x uses a second order variable of
level 0, that is, we have N x ≡ ∀X0.∀x(X0x → X0(S(x))) → X00 → X0x.

Definition 2.11 (I2
n, I∗n). By induction on n we define sets I2

n[X̂] of formulae
of second order arithmetic as follows.

• I2
0 [X̂] is the set of all first order L0[X̂]-formulae.

• I2
n+1[X̂] is the first order closure (conjunction, implication, first order uni-

versal quantification) of L0[X̂] ∪ {∀XnA [Xn/X̂] | A ∈ I2
n[X̂]}.

We write I2
n for the set of all I2

n[X̂]-formulae without free second order variables
and I2

n[Xn] for {A [Xn/X̂] | A ∈ I2
n[X̂]}. Moreover, we define the sets I∗n =⋃

k≤n

I2
k [Xk] with the reading that each of the Xk in the union should range over

all the second order variables of level k.

Obviously we have I∗n ⊂ I∗n+1. It should be noted that X00 ∧ X10 is not a
legal formula; nor is X00 ∧ ∀X0.(X00 → X00).

Definition 2.12 (HA2
n). The system HA2

n is defined to be the fragment of
HA2, where all occurring formulae are in I∗n.

Remark 2.13. It should be noted that the fragments of analysis presented here
are somewhat non-standard in that elimination of second order quantification is
allowed for arbitrary formulae, but the language of the system itself is restricted.

To compare the approach of this article with more conventional presentations
consider the system, where the ∀X-elimination is restricted to variables

Γ ` ∀XA(X)
Γ ` A(Y)

and comprehension axioms of the form

∃X∀x.Xx ↔ A(x)

are present for all A ∈ I∗n, maybe with other variables than x free. Then a
partial cut-elimination shows that all proofs of I∗n-formulae in that system can

5

be transformed into proofs in HA2
n. In other words, our systems HA2

n can be
thought of as canonical proofs for I∗n-comprehension.

It may, however, be interesting to note that when showing the main Lemma
5.9 towards the admissibility of ∀X-elimination we actually use that we have a
good overview of normal (semi-formal) proofs of ∀XA(X).

Remark 2.14. We note that, up to (level-ignoring) α-equality all formulae in
I2

n are built from a single second order variable. This can be proved by induction
on the Definition 2.11 of I2

n.

Our sets I2
n[Xn] are closed under substitution. More precisely, by simple

induction on A one shows

Lemma 2.15. If A(Xn),A ∈ I2
n[Xn] then A(A) ∈ I2

n[Xn].

Remark 2.16. Note that in Lemma 2.15 it was crucial that the free second
order variable of A is of level n. Substitution in free variables of too low level
might lead to illegal formulae. Consider for example A(X1) ≡ X10∧∀X0.X00 →
X00 andA ≡ X0. Then A(A) is the non well-formed expression X00∧∀X0.X00 →
X00.

This will not be a problem when embedding ID−
n into HA2

n as all formulae
we deal with in this embedding will contain no free second order variables.

In our systems HA2
n we do not have any induction. One can think of a

universe containing other first order objects than just the natural numbers.
However, everything built up from zero and sucessor is a natural number. The
following two lemmata can be shown by a simple argument within HA2

1.

Lemma 2.17. HA2
1 ` N 0.

Lemma 2.18. HA2
1 ` ∀x(N x → N (Sx)).

Definition 2.19 (HA2
n,(k)). The system HA2

n,(k) is defined to be HA2
n extended

by the axiom scheme

∀x(A(x) → A(Sx)) → A(0) → ∀xA(x)

for every Π0
k-formula A.

Remark 2.20 (Coding). In particular, HA2
n,(0) is HA2

n plus induction for all
∆0

0-formulae. This contains all the equations of Primitive Recursive Arithmetic
and in particular coding is available. Hence arguments can be formalized in the
usual way, even if coding is needed.

Obviously “HA2
n + Arithmetical Induction” is just the union of the systems

HA2
n,(k) for all k. We note that HA2

0,(k) is just an intuitionistic variant of the
system Πk − IA of Peano Arithmetic restricted to the induction axiom for Πk

formulae only.

Definition 2.21 (HA2
n,(+)). The system HA2

n,(+) is defined to be “HA2
n + Full

Induction”, that is HA2
n with the axiom scheme

∀x(A(x) → A(Sx)) → A(0) → ∀xA(x)

for arbitrary formulae A of the language.

6

3 Embedding of IDc
n into HA2

n,(+)

First we show that the fragment HA2
n,(+) is strong enough to host the obvious

embedding of least fixed points as Π1
1 sets. Since HA2

n,(+) is based on minimal
logic, we have to start with a double-negation translation. To do so, we use the
one provided by Bucholz [6].

Definition 3.1 (A′). By induction on A ∈ Li[X] we define its double negation
translation A′ and simultaneously showing A ∈ Posi (or A ∈ Negi) implies
A′ ∈ Posi (or A′ ∈ Negi respectively).

• (Xt)′ ≡ ¬¬Xt and (PA
i t)′ ≡ ¬¬PA′

i t.

• ⊥′ ≡ ⊥ and A′ ≡ ¬¬A for A ∈ L0 atomic and different from ⊥.

• The translation is homomorphic with respect to the logical connectives,
that is (A ∧B)′ ≡ A′ ∧B′, (A → B)′ ≡ A′ → B′, and (∀xA)′ ≡ ∀xA′.

Since (doubly) negated formulae are stable, a simple induction on A shows

Lemma 3.2. ID−
n ` ¬¬A′ ↔ A′.

In the target of our embedding the only inductive predicates are of the form
PA′

i , that is, only fixed points of properly negated forms are built. We can now
show that these predicates are stable.

Lemma 3.3. ID−
i ` ¬¬PA′

i t ↔ PA′

i t.

Proof. We have ID−
i ` A′(PA′

i , t) ↔ PA′

i t by Proposition 2.8. Moreover we have
ID−

i ` ¬¬A′(PA′

i , t) ↔ A′(PA′

i , t) by Lemma 3.2 which shows that A′ is stable,
independently of the stability of X. So the claim follows.

By a simple induction on A we show

Proposition 3.4. (A(PA
i , t))′ ≡ A′(PA′

i , t).

In general, it is not the case, that (A(F , x))′ ≡ A′(F ′, x). Consider for
example A(X,x) ≡ Xx and F(z) ≡ ∀x.x = x. Then (A(F , x))′ ≡ F ′(x) ≡
(∀x.x = x)′ ≡ ∀x.¬¬x = x and A′(F ′, x) ≡ ¬¬F ′(x) ≡ ¬¬∀x.¬¬x = x. But at
least the formulae are provably equivalent.

Proposition 3.5. ID−
n ` (A(F , x))′ ↔ A′(F ′, x).

Proof. Induction on A, using Lemma 3.2 for the only non-trivial case A ≡
Xt.

To complete our embedding we have to show that the translation of the
axioms are provable.

Lemma 3.6.
ID−

n ` (∀x(A(PA
i , x) → PA

i x))′.
ID−

n ` (∀x(A(F , x) → F(x)) → ∀x(PA
i x → F(x)))′.

7

Proof. Using the syntactical equality shown in Proposition 3.4 we calculate
(∀x(A(PA

i , x) → PA
i x))′ ≡ ∀x(A′(PA′

i , x) → ¬¬PA′

i x). This formula is prov-
able from the corresponding induction axiom, since trivially PA′

i t → ¬¬PA′

i t.
Again we calculate (∀x(A(F , x) → F(x)) → ∀x(PA

i x → F(x)))′ ≡
∀x((A(F , x))′ → F ′(x)) → ∀x(¬¬PA′

i x → F ′(x)). By Lemmata 3.3 and 3.5 this
formula is provably equivalent to an instance of the corresponding induction
axiom.

Corollary 3.7. If IDc
n ` A then ID−

n ` A′.

Proof. By Lemma 3.6 the translations of the induction axioms are provable.
The translations of the non-induction axioms (Definition 2.2) follow immediately
from the corresponding axiom.

Moreover, classical logic is admissible since the translations of all formulae
are stable by Lemma 3.2.

Since minimal logic proves ¬¬¬R(x, y) ↔ ¬R(x, y) we get conservativity for
Π0

2-statements.

Corollary 3.8. For atomic R(x, y) ∈ L0 it holds that, if IDc
n ` ∀x∃yR(x, y)

then ID−
n ` ∀x¬∀y¬R(x, y).

As second order arithmetic is an impredicative system, the set theoretical
definition of the least fixed point can be formalized easily.

Definition 3.9. For A ∈ Ln[Xn] we define a formula A∗ of second order arith-
metic inductively as follows.

• (PA
i t)∗ ≡ ∀Xi.∀y((A(Xi, y))∗ → Xiy) → Xit and (Xit)

∗ ≡ Xit.

• The embedding is homomorphic for the other connectives, that is, A∗ ≡ A
for atomic A ∈ L0, (∀xA)∗ ≡ ∀xA∗, (A ∧B)∗ ≡ A∗∧B∗, and (A → B)∗ ≡
A∗ → B∗.

A simple induction shows that the range of the embedding is the fragment
we had in mind.

Lemma 3.10. If A ∈ Ln then A∗ ∈ I2
n. In particular A∗ has no free second

order variables.

Lemma 3.11. A∗((PA
i)∗, x) ∈ I2

n.

Proof. Immediate from Lemma 3.10, noting that for A ∈ Posi the predicate
X does not occur under any second-order quantifier (since Posi only contains
first-order formulae in X).

Remark 3.12. As in the proof of proposition 2.7 one shows that the translations
of positive formulae are monotone.

Lemma 3.13.
HA2

i,(+) ` (A(PA
i , ·) ⊂ PA

i)∗.

HA2
n,(+) ` (A(F , ·) ⊂ F → PA

i ⊂ F)∗ for F ∈ Ln and i ≤ n.

8

Proof. By definition we have

(A(PA
i , ·) ⊂ PA

i)
∗ ≡ ∀x.A∗((PA

i)
∗
, x) → ∀Xi.∀y(A∗(Xi, y) → Xiy) → Xix

where (PA
i)∗(y) ≡ ∀Xi.∀x(A∗(Xi, x)) → Xix) → Xiy.

Arguing informally in HA2
n,(+), the translation can be proved as follows.

Let x be arbitrary and assume A∗(PA
i
∗
, x). Let Xi be arbitrary and assume

∀y.A∗(Xi, y) → Xiy. Using that last assumption we get ∀y(PA
i)∗(y) → Xiy.

Hence, by monotonicity (remark 3.12) of A∗ we get ∀yA∗((PA
i)∗, y) → A∗(Xi, y),

so we can conclude Xix.
By definition we have (A(F , ·) ⊂ F → PA

i ⊂ F)∗ ≡

∀y(A∗(F∗, y) → F∗(y)) → ∀x.(∀Xi.∀y(A∗(Xi, y) → Xiy) → Xix) → F∗(x)

Arguing informally in HA2
n,(+) this can be proved as follows. Assume

∀y.A∗(F∗, y) → F∗(y). Let x be arbitrary and moreover assume
∀Xi.∀y(A∗(Xi, y) → Xiy) → Xix. Specialising the last assumption to F∗ we
get F∗(x) from our first assumption.

Remark 3.14 (Monotone inductive definitions). Note that in the proof
of Lemma 3.13 only monotonicity of A∗ was used. The only point in restricting
PA

i to positive A is to have a canonical proof that A∗ is monotone. So one
might be tempted to allow PA

i for arbitrary A and relativize the first axiom to
A being monotone. However, monotonicity is a second order concept and does
not fit well into the arithmetical framework of systems of inductive definitions.
Note that, due to the restriction to one second-order variable, some mild coding
is necessary to express monotonicity: ∀X.X〈0, ·〉 ⊂ X〈1, ·〉 →

As all the axioms not concerned with the PA
i and all the logical rules of ID−

n

are also present in HA2
n,(+) we obtain

Corollary 3.15. If ID−
n ` A then HA2

n,(+) ` A∗.

In particular, for Π0
2-statements this corollary reads as

Corollary 3.16. For atomic R(x, y) ∈ L0, if ID−
n ` ∀x¬∀y¬R(x, y) then

HA2
n,(+) ` ∀x.¬∀y¬R(x, y).

4 Embedding of HA2
n,(+) into HA2

n+1

Induction can be eliminated by relativizing all first order quantifiers to the
property of being a natural number.

Definition 4.1. For A ∈ I2
n[Xn] we define A] ∈ I2

n+1[Xn+1] by induction on
the formula A as follows.

• (∀xA)] ≡ ∀x.N x → A], (Xnt)] ≡ Xn+1t and (∀XnA)] ≡ ∀Xn+1A
]

• The other connectives are translated homomorphically, that is (R~t)
] ≡ R~t,

⊥] ≡ ⊥, (A ∧B)] ≡ A] ∧B] and (A → B)] = A] → B].

9

Remark 4.2. When introducing second order arithmetic we also fixed a differ-
ent use of the symbol ⊂. However, via the our embeddings these two notions
are coherent. More precisely (A ⊂ B)∗] ≡ A∗] ⊂ B∗].

Lemma 4.3. For every formula A ∈ I∗n

HA2
n+1 ` (∀x(A(x) → A(Sx)) → A(0) → ∀xA(x))]

.

Proof. Unfolding the definition yields (∀x(A(x) → A(Sx)) → A(0) → ∀xA(x))]

≡ (∀x.N x → A](x) → A](Sx)) → A](0) → ∀x.N x → A](x).
Arguing informally within HA2

n+1 we assume ∀x.N x → A](x) → A](Sx)
and A](0). Moreover let x be arbitrary and assume N x. We have to show
A](x).

Instantiate N x to A](·) ∧ N (·) to obtain ∀y((A](y) ∧ N y) → (A](S(y)) ∧
N (S(y)))) → (A](0) ∧ N 0) → (A](x) ∧ N x). Since we have A](0) and (by
Lemma 2.17) also N 0, it suffices to show ∀y.(A](y) ∧ N y) → (A](S(y)) ∧
N (S(y))). So, for arbitrary y assume A](y) ∧ N y. From our first assumption
we get A](Sy) and from Lemma 2.18 we get N (Sy).

A simple induction on the buildup of terms shows

Lemma 4.4. For every term t we have a proof of t being total. More precisely,
if the free variables of t are among ~x then HA2

1 ` N ~x → N t.

Proof. Immediate from Lemmata 2.17, 2.18, and 4.3.

Lemma 4.5. If HA2
n,(+) proves the sequent Γ ` A then HA2

n+1 proves the
sequent N ~x,Γ] ` A] where ~x are the free variables of Γ, A.

Proof. Induction on the derivation. All proof rules translate identical, except
for the induction principle, where we use Lemma 4.3, and ∀x-elimination, where
we use Lemma 4.4. It should be noted that at the only position where the free
variables of Γ, A decrease, (when an ∀x-introduction is used) we can also get rid
of the assumption N x via →-introduction.

For the special case of Γ = ∅ and A a sentence we obtain

Corollary 4.6. If HA2
n,(+) ` A for some closed formula A then HA2

n+1 ` A].

In particular, for Π0
2-statements this reads as

Corollary 4.7. For atomic R(x, y) ∈ L0, if HA2
n,(+) ` ∀x.¬∀y¬R(x, y) then

HA2
n+1 ` ∀x.N x → ¬∀y(N y → ¬R(x, y)).

5 Proof Theoretic Reduction of HA2
n+1,(k) to ID∗

n

From a proof theoretic point of view, the most difficult rule of second order
arithmetic is the elimination of a second order quantifier, as this rule lacks the
subformula property. In fact, when stepping from ∀XA(X) to A(A) the formula
might get arbitrary complex.

We shall therefore develop a semi-formal notion of “normal proofs”, that
is, of proofs with the subformula property, in such a way that ∀X-elimination
becomes admissible. The main obstacle to achieve this are proofs by assumption.

10

The Ω-rule, introduced by Buchholz [6] and used in the context of second
order arithmetic by Buchholz and Schütte [8], solves this problem by anticipat-
ing cut elimination. If finally we consider a proof with no open assumptions,
then in every subproof the open assumptions will sooner or later be replaced
by proofs. So it suffices to have a proof of A(A) for every possible proof of
∀Xn.A(Xn) that does not have assumptions containing ∀Xn-formulae positively.
But such proofs are proofs by introduction and hence a substitution argument
works.

The overall strategy of our proof theoretic reduction is as follows. We first
define a notion d `n,(K) Γ = A of semi-formal proofs (Definition 5.2). This
notion of proof features the base case (atomic and ∀X-formulae) of partial truth
predicates f (K) Γ = C for I∗N -formulae (Definition 5.11).

Since elimination of second order quantification of maximal level (Lemma 5.9)
and the Ωk+1-rule are admissible (Lemma 5.15), our partial truth predicates
have all the needed properties of a truth predicate, including ∀X-elimination
(Lemma 5.17). So a simple induction on HA2

N shows that everything provable
is “true” (Theorem 5.19). Since our notion of “truth” is built on the notion
of provability, we obtain (Lemma 5.14) a semi-formal proof and a collapsing
property (Lemma 5.10) finally gets us back to the more usual notion of proof
(and hence “real truth”).

Definition 5.1 (Neg2
n, Pos2n). We inductively define sets Neg2

n and Pos2n of
second order formulae as follows.

• If A ∈ I2
k [Xk] for some k ≤ n then A ∈ Neg2

n ∩ Pos2n.

• If A ∈ I2
n[Xn] then ∀XnA ∈ Pos2n.

• If A ∈ Neg2
n then ∀xA ∈ Neg2

n; if A ∈ Pos2n then ∀xA ∈ Pos2n.

• If A ∈ Neg2
n and B ∈ Pos2n then A → B ∈ Pos2n; if A ∈ Pos2n and B ∈ Neg2

n

then A → B ∈ Neg2
n.

• If A,B ∈ Neg2
n then A ∧B ∈ Neg2

n; if A,B ∈ Pos2n then A ∧B ∈ Pos2n.

We note that Neg2
n ⊂ Neg2

n+1 and Pos2n ⊂ Pos2n+1 and moreover N x ∈ Pos20.
We will make use of various notations of recursion theory, most prominently,

the coding 〈k1, . . ., kn〉 of lists of natural numbers and the i’th projection (n)i of a
natural number n, thought of as the code of a list. That is, (〈k1, . . ., kn〉)i = ki+1.
We assume a primitive recursive such coding with 〈k1, . . ., kn〉 > ki. Moreover,
by {e} (k) we denote the “Kleene bracket”: the value, if it exists, of the e’th
partial recursive function at argument k. The notation {e} (k) = ` presupposes
that {e} (k) is defined. We note that {e} (k) = ` can be expressed by a Σ1-
formula in the language of arithmetic. So every theory extending PRA, hence
in particular ID∗

N , provides enough induction on the natural numbers to show
all the needed properties of our coding functions.

We also presuppose some canonical arithmetization (“Gödel numbering”) of
all our syntactical entities which we denote by pq. We assume this Gödel num-
bering to be such that all the usual operations on syntactical entities are primi-
tive recursive on the codes. In accordance with our convention that we identify
α-equal formulae we assume that the codes are invariant under α-equivalence.
We use dotted variables ẋ within the Gödel brackets pq to signify that the object

11

coded by x, rather than the code of x itself should be inserted at this position.
We assume that all our codings are standard, that is, they have the usual mono-
tonicity properties. In particular, we presuppose that the Gödel number of every
formula is bigger than that of every proper subformula.

We use σ as a notation for first order substitutions; that is, when using σ, it
is tacitly understood, that σ ranges over all first order substitutions (and only
those). Application of substitution σ to a formula A is denoted by postfixing
its notation, as in Aσ. If Γ = {A1, . . . , An} is a set of formulae, we write Γσ for
the set {A1σ, . . . , Anσ}.

Informally, normal proofs are those where no elimination follows an intro-
duction. Technically this can be expressed by allowing elimination rules only if
the major premise is an elimination, assumption or axiom.

Let N ≥ 1 and K ≥ 0 be a natural numbers kept fixed for the rest of this
section. We will develop a notion of semi-formal proofs for HA2

N,(K) definable
and properties thereof provable in ID∗

N−1. Recall that HA2
N,(K) is HA2 restricted

to N levels of nested (but not interleaved) quantifications, but equipped with
induction for Π0

K-formulae.
Nevertheless we will continue to state all our theorems as theorems of our

meta theory PRA.

Definition 5.2 (Normal derivations d `n,(K) Γ = A). We define intro(d) to
be a shorthand for (d)0 > 4.

By iterated inductive definitions we define the relations d `n,(K) Γ = A for
n < N and d a natural number, A ∈ I∗n+1 a formula and Γ ⊂ I∗n+1 a finite set
of formulae.

• (Axiom) 〈0〉 `n,(K) Γ = A if A ≡ Bσ, where σ is an arbitrary first order
substitution and B is an axiom in the sense of Definition 2.2 or of the
form ∀x(A(x) → A(Sx)) → A(0) → ∀xA(x) for some Π0

K-formula A.

• (Assumption) 〈1〉 `n,(K) Γ = A if A ∈ Γ.

• (→-elim) If d `n,(K) Γ = A → B with ¬intro(d) and e `n,(K) Γ = A then〈
2, d, e, pAq

〉
`n,(K) Γ = B.

• (∧-elim) If d `n,(K) Γ = A0 ∧A1 and ¬intro(d) then
〈
3, d, i, pA1−iq

〉
`n,(K)

Γ = Ai.

• (∀x-elim) If d `n,(K) Γ = ∀xA(x) with ¬intro(d) then
〈
4, d, p∀xA(x)q

〉
`n,(K)

Γ = A(t).

• (→-intro) If d `n,(K) Γ, A = B then 〈5, d〉 `n,(K) Γ = A → B.

• (∀x-intro) If d `0,(K) Γ′ = A(x) then
〈
6, d, pxq

〉
`0,(K) Γ = ∀zA(z) where

Γ′ is the subset of those formulae of Γ not containing x free.

• (ω) If n ≥ 1 and for all terms t it holds that {e}
(
ptq

)
`n,(K) Γ = A(t)

then 〈6, e〉 `n,(K) Γ = ∀xA(x).

• (∧-intro) If d0 `n,(K) Γ = A0 and d1 `n,(K) Γ = A1 then 〈7, d0, d1〉 `n,(K)

Γ = A0 ∧A1.

12

• (∀X-intro) If d `n,(K) Γ′ = A(X) then
〈
8, d, pXq

〉
`n,(K) Γ = ∀XA(X)

where Γ′ is the subset of those formulae of Γ not containing X free.

• (Ωk+1) If k < n and d `n,(K) Γ = ∀XkA(Xk) and (for all ∆ ⊂ Neg2
k it holds

that if d′ `k,(K) ∆ = ∀XkA(Xk) then {e}
(〈

d′, p∆q
〉)

`n,(K) ∆,Γ = B)
then

〈
9 + k, p∀XkA(Xk)q, d, e

〉
`n,(K) Γ = B.

Remark 5.3. The reader is invited to verify that the above Definition 5.2 of
the relations · `n,(K) · = · for n = 0, . . . , N − 1 can be formalized in ID∗

N−1.
In this formalization we would use appropriate Gödel codes instead of Γ and
A. Recalling that we identify α-equal formulae also in our meta theory, the
definition fits with our convention that α-equal formulae have identical Gödel
codes.

So, officially, for 1 ≤ n < N we have a formula AK,n ∈ Posn−1, formalizing
the underlying operator and a predicate PAK,n

n for the fixed point. We write
d `n,(K) Γ = A for the official PAK,n

n

〈
d, pΓq, pAq

〉
.

The relation · `0,(K) · = · is in fact a primitive recursive relation, and
formalized as such. It should be noted, that the definition of · `0,(K) · = · is
finitely branching so that it is reasonable to speak of “the number of inferences”.
Moreover, this number can be read off the code of the derivation in a primitive
recursive way.

We have “saved” an inductive definition by inspecting only a particular
branch at the first “ω-branching” level and so could obtain an arithmetical re-
lation. This technique has a strong similarity to the one used in Arai’s “slow
growing analogue to Buchholz’ proof” [5]. There “pointwise transfinite induc-
tion” for the ordinal notation system for the ordinal of IDc

p was shown within
IDc

p−1. The crucial observation was that the lowest inductive definition becomes
arithmetical when for an ordinal term of type ω only the n’th element of the
fundamental sequence is considered, for a fixed but arbitrary n given from the
outside. In our case, to show a property for all terms we are happy with a proof
just for a single variable — provided it is sufficiently new.

The reason why we nevertheless need the (ω) rule is that later we will (in
Definition 5.11) define (partial) truth predicates and then will have to show (in
Lemma 5.16) that everything derivable in · `n,(K) · = · is true. In particular, we
have to show that from a proof of a ∀xA statement we get the truth of A(t) for all
terms t. In the case of a universal statement introduced by (∀x-intro), soundness
is ensured by admissibility of first order substitution. But such a proof would fail
at an (Ω)-rule. To conclude . . . `n,(K) Γσ = Bσ by an (Ω)-rule again we would
have to provide (in a uniform way) a proof of . . . `n,(K) ∆,Γσ = Bσ. However,
the induction hypothesis would only give a proof of . . . `n,(K) ∆σ,Γσ = Bσ.
This should also be compared to the careful formulation of Lemma 5.8.

Remark 5.4. Note that in Definition 5.2 the “witness” d is constructed in
such a way, that for given Γ and A such that d `n,(K) Γ = A holds, one can
uniquely reconstruct all the formulae Γ′, A′ and relations d′ `k,(K) Γ′ = A′ that
led to the relation d `n,(K) Γ = A in the inductive definition. Moreover, these
reconstruction is recursive as a theorem of ID∗

N . This will be used tacitly in the
sequel.

Remark 5.5 (Weakening). As a theorem of ID∗
n′ , if d `n,(k) Γ = A, n ≤ n′,

k ≤ k′ and Γ ⊂ Γ′ then d `n′,(k′) Γ′ = A.

13

Lemma 5.6 (First order substitution). There is a primitive recursive f such
that if d `0,(K) Γ = A then f(pAq, pΓq, d, pσq) `0,(K) Γσ = Aσ and the number
of inferences is not changed. Moreover, if ¬intro(d) then ¬intro(f(. . . , d, . . .)).

Proof. Induction on d `0,(K) Γ = A. Note that (in Definition 5.2) we have
constructed our set of axioms to be closed under substitution.

Corollary 5.7. If d `n,(K) Γ = ∀xA(x) and d ends in (∀x-intro), that is, if d

is of the form d =
〈
6, d′, pxq

〉
, then n = 0 and there is a natural number e that

{e}
(
ptq

)
`0,(K) Γ = A(t) and {e}

(
ptq

)
has less inferences than d.

Proof. First we note that the rule (∀x-intro) is only present at level 0. Then we
apply Lemma 5.6 to the premise of the derivation, that is, we apply Lemma 5.6
to the derivation d′.

Lemma 5.8 (Substitution for second order variables). There is a prim-
itive recursive f such that the following is a theorem of ID∗

n.
If d `n,(K) Γ = A then f(pΓq, pAq, pθq, pθ′q, d) `n,(K) Γθ′θ = Aθ′θ where θ

is a substitution of second order variables with only variables of level n in its
domain such that Γθ and Aθ are well-formed, and θ′ is a permutation of second
order variables of level less than n.

Proof. Induction along the inductive Definition 5.2 of d `n,(K) Γ = A.
For the case (Axiom) we note that our axioms do not contain second order

variables.
For the cases of an elimination rule we simultaniously proof that the trans-

formed proof is also by elimnation.
For (∀X-intro) with the abstracted variable X of level less than n let X′ be a

new variable of the same level as X. Let θ′′ = [X′,X/X,X′]θ′ be the composition
of permutations and apply the induction hypothesis with substitutions θ and
θ′′. For (∀X-intro) with the abstracted variable X of level n let X′ be a new
second order variable of level n. Apply the induction hypothesis for θ extended
by X 7→ X′. In both cases conclude by (∀X-intro) again, with X′ as abstracted
variable.

For the case (Ωk+1) we have by induction hypothesis . . . `n,(K) Γθ′θ = ∀XkA.
For all ∆ ⊂ Neg2

k and d′ `k,(K) ∆ = ∀XkA we have by induction hypothesis
. . . `k,(K) ∆θ̄′ = ∀XkA where θ̄′ is the inverse of θ′. Hence, by the premise of the
(Ωk+1)-rule we have . . . `n,(K) ∆θ̄′,Γ = B. Again by induction hypothesis we
obtain . . . `n,(K) ∆,Γθ′θ = Bθ′θ, noting that ∆θ = ∆. Therefore an application
of the (Ωk+1)-rule again completes the derivation.

All the remaining cases are immediate by induction hypothesis, where in the
case of (∀x-intro) the needed renaming is provided by Lemma 5.6.

Note that the proof of the following lemma does not introduce new (Ω)-
inferences. The inferences are instead only reconstructed where they occur in the
given semi-formal derivation. However, the lemma only considers quantification
at the topmost level and this is important, for otherwise the restriction Γ ⊂ Neg2

n

would not suffice. Nevertheless, in applications of the (Ω)-rule in Lemma 5.17
the contexts are of sufficiently small level. So we will use the lemma for various
values n strictly smaller than N .

14

Lemma 5.9 (Admissibility of ∀Xn-elimination). There is a primitive re-
cursive f such that the following is a theorem of ID∗

n.
If d `n,(K) Γ = ∀XnA(Xn) with Γ ⊂ Neg2

n and A ∈ I∗n such that A(A) is a
well-formed formula, then f(p∀XnA(Xn)q, pAq, pΓq, d) `n,(K) Γ = A(A).

Proof. Induction along the inductive Definition 5.2 of d `n,(K) Γ = ∀XnA(Xn).
An elimination rule would require an axiom or assumption containing

∀XnA(Xn) strictly positive, which cannot be as our axioms are first order and
Γ ⊂ Neg2

n.
If the last rule was (∀Xn-intro) then Lemma 5.8 applies.
By the form of the conclusion the only other inference the derivation could

end in is (Ωk+1), where we can use the induction hypothesis.

Lemma 5.10 (Collapsing). There is a partially recursive function f such that
the following is a theorem of ID∗

n.
If d `n,(K) Γ = A with Γ ⊂ Neg2

` and A ∈ Pos2` for some ` < n then
f(`, d, pΓq, pAq) ``,(K) Γ = A.

Proof. Induction along the inductive Definition 5.2 of d `n,(K) Γ = A, showing
the claim simultaneously for all ` < n.

In the case of the (Ωk+1)-rule with ` ≤ k we have f(k, d, . . .) `k,(K) Γ = ∀XkA

by induction hypothesis. Since ` ≤ k and hence Γ ⊂ Neg2
` ⊂ Neg2

k by the
premise of the rule we get {e}

(〈
f(k, d, . . .), pΓq

〉)
`n,(K) Γ = B. By application

of the induction hypothesis we get f
(
`, {e} (. . .) , pΓq

)
``,(K) Γ = B.

In the case of the (Ωk+1)-rule with ` > k we have by induction hypothesis
f(`, d, . . .) ``,(K) Γ = ∀XkA and f(`, {e}

(〈
d′, p∆q

〉)
, . . .) ``,(K) ∆,Γ = B if

∆ ⊂ Neg2
k and d′ `k,(K) ∆ = ∀XkA(Xk). Hence an application of the (Ωk+1)-

rule yields the desired derivation.
If ` = 0 and the last rule was the (ω) rule we use the premise of this rule

for some new variable y and conclude by (∀x-intro). The remaining cases are
trivial.

With our semi-formal notion of normal proofs we have an appropriate se-
mantics for ∀X-statements. Based on this semantics we define (partial) truth
predicates in the usual way, similar to Tait’s computability predicates [14].

To be proof theoretically optimal, these predicates are defined on the meta-
level, by a family of formulae. Of course, an additional inductive definition
would suffice to define these predicates internally, requiring, however, a stronger
system.

Definition 5.11 (f (K) Γ = C). By induction on k we define a family f (K),k

Γ = C of formulae in the language of ID∗
N−1 such that for all C ∈ I∗N with less

than k logical symbols, all f ∈ N and Γ ⊂ Neg2
N−1 the following properties hold.

• f (K),k Γ = C ⇔ f `N−1,(K) Γ = C
if C atomic or of the form ∀XA

• f (K),k Γ = A → B ⇔
∀g ∈ N,∆ ⊂ Neg2

N−1(g (K),k−1 ∆ = A

⇒ {f}
(〈

g, p∆q
〉)

(K),k−1 Γ,∆ = B)

• f (K),k Γ = ∀xA(x) ⇔ ∀t({f}
(
ptq

)
(K),k−1 Γ = A(t))

15

• f (K),k−1 Γ = A ∧B
⇔ (f)0 (K),k Γ = A and (f)1 (K),k−1 Γ = B

Definition 5.11 could be defined by induction on C. However, we need
slightly more uniformity. So, officially, we define a family AK,k(x, y, z) of for-
mulae indexed by k, with free number variables for f , pΓq and pCq in such
a way that whenever the number of logical symbols in C is at most k then
AK,k(f, pΓq, pCq) is equivalent to f (K) Γ = C as defined (say) by induction
on C. This can easily be achieved by setting (with the AK,N−1 of Remark 5.3)

AK,k(x, y, z) : ≡ (“z codes a formula which is atomic or of the form ∀XB”

∧ PAK,N−1
N−1 〈x, y, z〉)

∨ (“x codes a formula of the form B → C”

∧ ∀g∀∆ ⊂ NegN−1. AK,k−1(g, p∆q, pBq)
→ AK,k−1({f}

(〈
g, p∆q

〉)
, pΓ,∆q, pCq))

∨ . . .

It should also be noted that for k′ ≥ k it is provable in ID∗
N−1, that if z codes

a formula with at most k logical symbols then Ak′(x, y, z) and Ak(x, y, z) are
equivalent. This can be shown by induction on k. From now on we will write
f (K) Γ = C for AK,k(f, pΓq, pCq) with appropriately chosen k, tacitly as-
suming k to be big enough. It should be obvious, that for each of the following
theorems we provide a primitive recursive family of proofs.

Remark 5.12. As weakening is admissible for derivations (Remark 5.5), an
easy induction shows that it is also admissible for the truth relation. More
precisely, provably in ID∗

N−1, if f (K) Γ = A, Γ ⊂ Γ′ then f (K) Γ′ = A.

Lemma 5.13 (Renaming of second order variables). There is a primitive
recursive function f, such that for every natural number k the following is a
theorem of ID∗

N−1.
If C is a formula with at most k logical symbols, θ a level-preserving permu-

tation of second order variables, and f (K) Γ = C then
{
f(pCq, pθq)

}
(f) (K)

Γθ = Cθ.
We write fCθ for

{
f(pCq, pθq)

}
(·).

Proof. By induction on the logical complexity of C.
If C is atomic or of the form ∀XA then Lemma 5.8 applies.
If C = A → B and g (K) ∆ = Aθ then, by induction hypothesis fB

θ̄
(g) (K)

∆θ̄ = A, where θ̄ is the inverse of θ. Hence, {f}
(
fB
θ̄

(g)
)

(K) Γ,∆θ̄ = B and
by induction hypothesis, fAθ ({f}

(
fB
θ̄

(g)
)
) (K) Γθ, ∆ = Bθ.

The cases A ∧B and ∀xA are immediate by induction hypothesis.

Lemma 5.14. There are primitive recursive functions f and g, such that for
every k the following is a theorem of ID∗

N−1.
If C is a formula with at most k logical symbols, then

• e `N−1,(K) Γ = C, ¬intro(e), C ∈ Neg2
N−1 ⇒

{
f(pCq, pΓq)

}
(e) (K)

Γ = C,

• f (K) Γ = C, C ∈ Pos2N−1 ⇒
{
g(pCq, pΓq)

}
(f) `N−1,(K) Γ = C.

16

Again we write fCΓ for
{
f(pCq, pΓq)

}
(·) and gC

Γ for
{
g(pCq, pΓq)

}
(·).

Proof. Induction on the logical complexity of C. We only consider the non-
trivial cases.

If C is of the form A → B we argue as follows.

• We have A ∈ Pos2N−1 and B ∈ Neg2
N−1. Assume g (K) ∆ = A. By

induction hypothesis gA
∆(g) `N−1,(K) ∆ = A. Since ¬intro(e) by assump-

tion, we get
〈
2, e, gA

∆(g), pAq
〉
`N−1,(K) Γ,∆ = B. Hence by induction

hypothesis fBΓ,∆(
〈
2, e, gA

∆(g), pAq
〉
) (K) Γ,∆ = B.

• We have A ∈ Neg2
N−1 and B ∈ Pos2N−1. By definition we have 〈1〉 `N−1,(K)

A = A. Hence by induction hypothesis fAA(〈1〉) (K) A = A. Thus
{f}

(〈
fAA(〈1〉), pAq

〉)
(K) Γ, A = B. So gB

A,Γ({f} (. . .)) `N−1,(K) Γ, A =

B by induction hypothesis. We conclude by (→-intro).

If C is of the form ∀xA(x) we argue in the following way.

• Since ¬intro(d), we have
〈
4, e, p∀xA(x)q

〉
`N−1,(K) Γ = A(t), hence

f
A(t)
Γ (

〈
4, e, p∀xA(x)q

〉
) (K) Γ = A(t).

• We have for every term t that {f}
(
ptq

)
(K) Γ = A(t), hence by induction

hypothesis g
A(t)
Γ ({f}

(
ptq

)
) `n,(K) Γ = A(t). The (ω)-rule applies. (If

N = 1 then g
A(y)
Γ ({f}

(
pyq

)
) `0,(K) Γ = A(y) for a new variable y, and

we apply (∀x)-intro.)

Lemma 5.15 (Admissibility of (Ωk+1) for k ≤ N −1). There is a primitive
recursive function f such that for every k the following is a theorem of ID∗

N−1.
Let C be a formula with at most k logical symbols and assume for Γ ⊂

Neg2
N−1 that d (K) Γ = ∀XkA and k ≤ N − 1. Assume moreover that for all

∆ ⊂ Neg2
k if d′ `k,(K) ∆ = ∀XkA then {e}

(〈
d′, p∆q

〉)
(K) ∆,Γ = C. Then{

f(pCq, pΓq)
}

(〈d, e〉) (K) Γ = C.
Again we write fCΓ for

{
f(pCq, pΓq)

}
(·).

Proof. Induction on the logical complexity of C.
Case C is atomic or of the form ∀XB and so we have to show . . . `N−1,(K)

Γ = C. If k < N − 1, we may apply an (Ωk+1)-inference, using d `N−1,(K)

Γ = ∀XkA and {e}
(〈

d′, p∆q
〉)

`N−1,(K) ∆,Γ = C. If k = N − 1 then
{e}

(〈
d, pΓq

〉)
(K) Γ = C by assumption.

Case C = B → B′. Let Γ′ ⊂ Neg2
N−1 and assume g (K) Γ′ = B. We

have d (K) Γ,Γ′ = ∀XkA. Moreover, for any ∆ ⊂ Neg2
k, d′ `k,(K) ∆ =

∀XkA we have {e}
(〈

d′, p∆q
〉)

(K) Γ,∆ = B → B′ by assumption and hence{
{e}

(〈
d′, p∆q

〉)} (〈
g, pΓ′q

〉)
(K) Γ,∆,Γ′ = B′. So by induction hypothesis

(using Γ,Γ′ ⊂ Neg2
N−1) we get . . . (K) Γ,Γ′ = B′.

The remaining cases follow immediately by the induction hypotheses.

Lemma 5.16. There is a partially recursive f such that for every natural number
k the following is a theorem of ID∗

N−1.
Assume that each of the formulae A, ~A has at most k symbols. Assume

moreover that d `N−1,(K) ∆, ~A = A and fi (K) Γ = Ai for i = 1, . . . , ` and
some ∆,Γ ⊂ Neg2

N−1. Then f(
〈
d,

〈
f1, pA1q

〉
, . . .,

〈
fn, pAnq

〉〉
) (K) ∆,Γ = A.

17

Proof. Within ID∗
N−1 we argue by the induction principle provided by the in-

ductive Definition 5.2 of · `n,(K) · = ·, where in the case of · `0,(K) · = ·
we actually use induction on the number of inferences. We only consider the
non-trivial cases.

Case (Axiom). By Lemma 5.14, noting that axioms are in I2
0 ⊂ Neg2

0 ⊂
Neg2

N−1.
Case (→-elim). By induction hypothesis e (K) ∆,Γ = A → B and

e′ (K) ∆,Γ = A for appropriate e and e′. Hence {e′} (e) (K) ∆,Γ = B
follows from the definition of our partial truth predicates.

Case (→-intro). By induction hypothesis we know that f (K) Γ′ = A

implies f(
〈
d,

〈
f1, pA1q

〉
, . . .,

〈
fn, pAnq

〉
,
〈
f, pAq

〉〉
) (K) ∆,Γ,Γ′ = B. Hence

e (K) ∆,Γ = A → B by Definition 5.11 of the truth predicates, where e is an
index of the recursive function f 7→ f

(〈
d,

〈
f1, pA1q

〉
, . . .,

〈
fn, pAnq

〉
,
〈
f, pAq

〉〉)
.

Case (∀x-intro). By Corollary 5.7 we find an index e such that for every
term t we have {e}

(
ptq

)
`0,(K) ∆, ~A = A(t) with a derivation with no more

inferences. Hence by induction hypothesis we get the desired truth relation in
a recursive way for every t.

Case (∀X-intro). We have d `n,(K) ∆, ~A = A(X) and X not free in ∆, ~A.
Let Y be a new second order variable and θ = [Y,X/X,Y]. Noting that X does
not occur in Ai, Lemma 5.13 yields fAi

θ (fi) (K) Γθ = Ai. Hence, by induction
hypothesis . . . (K) Γθ, ∆ = A(X), and by Lemma 5.14 we get . . . `N−1,(K)

Γθ, ∆ = A(X). By (∀X-intro) we obtain . . . `N−1,(K) Γθ, ∆ = ∀XA(X) and
hence by Lemma 5.8, since X is not free in ∆ and Y is new, . . . `N−1,(K)

Γ,∆ = ∀XA(X). This is what we had to show.
Case (Ωk+1). We have k < N − 1 and d `N−1,(K) ∆, ~A = ∀XkA(Xk).

Moreover, for all ∆′ ⊂ Neg2
k it holds that if d′ `k,(K) ∆′ = ∀XkA(Xk) then

{e}
(〈

d′, p∆′q
〉)
`N−1,(K) ∆′,∆, ~A = B.

By induction hypothesis we have . . . (K) ∆,Γ = ∀XkA(Xk). Moreover,
also by induction hypothesis we know for every ∆′ ⊂ Neg2

k that if d `k,(K)

∆′ = ∀XkA(Xk) then . . . (K) ∆′,∆,Γ = B. Using the assumption that ∆,Γ ⊂
Neg2

N−1 we can apply Lemma 5.15 to obtain . . . (K) ∆,Γ = B.

Lemma 5.17 (Admissibility of (∀X-elimination)). There is a partially
recursive f such that for all A and for every A ∈ I∗N , such that A(A) is well
formed, the following is a theorem of ID∗

N−1.
If Γ ⊂ Neg2

N−1 and f (K) Γ = ∀XkA(Xk) then f(f, pΓq, pAq, pXkq, pAq) (K)

Γ = A(A).

Proof. If k = N − 1 then we argue as follows: f `N−1,(K) Γ = ∀XN−1A(XN−1)
by assumption, hence . . . `N−1,(K) Γ = A(A) by Lemma 5.9, and . . . (K) Γ =

A(A) by Lemma 5.16.
If k < N − 1 we use the (Ωk+1)-rule to construct a derivation of A(A).

From this derivation we get a the truth of A(A) by Lemma 5.16. We have
f `N−1,(K) Γ = ∀XkA by assumption. So assume ∆ ⊂ Neg2

k and d `k,(K) ∆ =

∀XkA. Then by Lemma 5.9 we have . . . `k,(K) ∆ = A(A), and therefore also
. . . `N−1,(K) ∆,Γ = A(A).

Lemma 5.18 (Admissibility of (∀X-introduction)). There is a partially
recursive f such that for every formula A the following is a theorem of ID∗

N−1.

18

If f (K) Γ = A(Xk) for some k ≤ N − 1 and Γ ⊂ Neg2
N−1, such that Xk is

not free in Γ, then f(f, pXkq, pAq, pΓq) (K) Γ = ∀XkA(Xk).

Proof. We have A(Xk) ∈ Pos2N−1. Hence by Lemma 5.14 we have . . . `N−1,(K)

Γ = A(Xk), so by an application of (∀X-intro) we get a derivation of ∀XkA(Xk),
so the truth predicate holds for that formula.

Theorem 5.19 (Cut elimination). For every proof in HA2
N of A from as-

sumptions ~A there is a partially recursive f such that for every Γ the following
is a theorem of ID∗

N−1.
For every σ, if fi (K) Γσ = Aiσ for all i then f(pσq, ~f) (K) Γσ = Aσ.

Proof. Induction on the HA2
N derivation. For the axioms we use Lemma 5.14

using that our axioms are closed under substitution. The cases of introduc-
tion and elimination of second order quantifiers are covered by Lemmata 5.18
and 5.17. The remaining cases are trivial using the nature of · (K) · = · as
partial truth predicate.

Corollary 5.20 (Conservativity for first order formulae). If HA2
N,(K) ` A

for some first order formula A then ID∗
N−1 ` (HA2

0,(K) ` A).
As HA2

0,(K) is a subsystem of ΠK-IA the last statement in particular implies
ID∗

N−1 ` (ΠK-IA ` A).

Proof. From the proof of A we obtain by Theorem 5.19 that ID∗
N−1 ` ∃f(f (K)

∅ = A). By Proposition 5.14 we get ID∗
N−1 ` ∃g(g `N−1,(K) ∅ = A) and

by Proposition 5.10 we obtain ID∗
N−1 ` ∃g′(g′ `0,(K) ∅ = A). Inspection of

Definition 5.2 shows that all the rules of · `0,(K) · = · are also proof rules of
HA2

0,(K), hence ID∗
N−1 can read g′ as a proof in HA2

0,(K).

Remark 5.21. Since the truth of LN−1-formulae can be defined by one addi-
tional inductive definition on top of the N − 1 inductive definitions of ID∗

N−1,
an induction (within ID∗

N) on ID∗
N−1-proofs shows for LN−1-formulae B that

ID∗
N ` ∀~x. (ID∗

N−1 ` B(~x)) → PTrue
N

pB(~̇x)q

Finally, by (meta)induction on the LN−1-formula B we show that

ID∗
N ` ∀x. PTrue

N
pB(~̇x)q ↔ B(~x)

so that we obtain that ID∗
N reflects ID∗

N−1 in the sense that

ID∗
N ` ∀~x. (ID∗

N−1 ` B(~x)) → B(~x)

and we therefore get (by taking B(pAq) ≡ (ΠK-IA ` A)) as an immediate
consequence of Corollary 5.20 that the following is a theorem of ID∗

N .
All arithmetical consequences of HA2

N,(K) are already consequences of ΠK-IA.

Remark 5.22. Believing in ID∗
N , Remark 5.21 might look disturbing.

The systems HA2
n,(K) increase in consistency strength over PRA with growing

n, irrespectively of the amount K of arithmetical induction allowed. On the
other hand, the arithmetical consequences are only determined by the amount
of arithmetical induction.

19

But what about the consistency statement for HA2
n,(K), which is provable in

HA2
n+1?
The answer is, that in the absence of full induction the correct notion of the

consistency statement is no longer the Π0
1-statement “For all proofs it is not the

case. . . ”, but the (classically) Σ1
1-statement “For all natural numbers it is not

the case that they code a proof. . . ” which has the shape ∀x.N x → . . . and is
no longer an arithmetical formula.

Remark 5.23. Arguing within set theory, it is possible to obtain the conser-
vativity result for arithmetical formulae (Remark 5.21) by the following model
theoretic argument.

Assume HA2
N,(K) ` A for some first order formula A. We want to show

HA2
0,(K) ` A. By soundness we have HA2

N,(K) |= A and by completeness it
suffices to show HA2

0,(K) |= A. So assume M |= HA2
0,(K) for some first order

structure M, recalling that HA2
0,(K) is a first order theory. We have to show

M |= A. Let M̃ be the second order extension of M obtained by taking the full
power set(!) as second order structure. Then M̃ |= HA2

N,(K). In fact, M̃ even
is a model of full comprehension (but not necessarily of full induction). Hence
M̃ |= A. But for first order formulae A we have M̃ |= A if and only if M |= A.

However, it should be noted that this simple argument does not render Corol-
lary 5.20 useless, as it provides also the precise proof theoretical strength of this
conservativity statement. Note that the conservativity statement in particular
implies the consistency of HA2

N,(K) over Peano Arithmetic. So Corollary 5.20 is
optimal, as HA2

N,(K) and ID∗
N−1 are equiconsistent by Corollary 5.28.

Lemma 5.24. There is a primitive recursive f with ID∗
0 ` (∀n.fn (K) ∅ = N n).

Proof. Argue informally in ID∗
0. For every n we have to construct a derivation

(in the sense of · `0 · = ·) of ∀X0.X00 → ∀x(X0x → X0(S(x))) → X0n. To do
so, it suffices to construct a derivation of X0n of X00 and ∀x(X0x → X0(S(x))).
We do this in the obvious way and verify correctness of this construction by
induction(!) on n.

Lemma 5.25. If HA2
N,(K) ` ∀x.N x → ¬∀y¬R(x, y) then there is a partially

recursive f such that ID∗
N−1 ` ∀x.R(x, fx).

Proof. Assume HA2
N,(K) ` ∀x.N x → ¬∀y¬R(x, y). By Theorem 5.19 we obtain

ID∗
N−1 ` ∃f(f (K) ∅ = ∀x.N x → ¬∀y¬R(x, y)). By Lemma 5.24 we get

ID∗
N−1 ` ∀n(

{
{f}

(
pṅq

)}
(f(n)) (K) ∅ = ¬∀y¬R(n, y)).

Now argue informally in ID∗
N−1. By Proposition 5.14 we have a partially

recursive g such that ∀n(g(n) `N−1,(K) ∅ = ¬∀y¬R(n, y)). Hence by Propo-
sition 5.10 we get another partially recursive g′ such that ∀n(g′(n) `0,(K) ∅ =

¬∀y¬R(n, y)). This is a derivation in the system ΠK-IA. Since every formula
provably in ΠK-IA is true, there really is a y such that R(n, y) holds. Since R
is decidable, this y can be found in a recursive way.

Remark 5.26. In the proof of Lemma 5.25 we used the well-known property
that arithmetic reflects the system ΠK-IA which reads as follows.

PA ` ∀n.(ΠK-IA ` ∃yR(n, y)) → ∃yR(n, y)

20

However, we only needed a simpler form thereof, where we only have to deal
with proofs that are already partially cut-eliminated.

Summing up, we get the main result of this article.

Theorem 5.27. Let n and k be a natural number and R(·, ·) a primitive recur-
sive atom. Then the following are equivalent.

(α) IDc
n ` ∀x∃yR(x, y)

(β) ID−
n ` ∀x¬∀y¬R(x, y)

(γ) HA2
n,(+) ` ∀x¬∀y¬R(x, y)

(δ) HA2
n+1 ` ∀x.N x → ¬∀y(N y → ¬R(x, y))

(δ′) HA2
n+1,(k) ` ∀x.N x → ¬∀y(N y → ¬R(x, y))

(ε) HA2
n+1 ` ∀x.N x → ¬∀y¬R(x, y)

(ε′) HA2
n+1,(k) ` ∀x.N x → ¬∀y¬R(x, y)

(ζ) For some natural number e it is the case that ID∗
n ` ∀xR(x, {e} (x)) and

this statement is to be read that in particular ID∗
n ` ∀x∃y. {e} (x) = y.

Proof. (α)⇒(β) is Corollary 3.8; (β)⇒(γ) is Corollary 3.16; (γ)⇒(δ) is Corol-
lary 4.7; (δ)⇒(ε), (ε)⇒(ε′), (δ)⇒(δ′) and (δ′)⇒(ε′) are trivial; (ε′)⇒(ζ) is
Lemma 5.25 and (ζ)⇒(α) holds since ID∗

n is a subsystem of IDc
n.

Corollary 5.28. Taking for R in Theorem 5.27 an inconsistent formula, say
1 = 0, we get equiconsistency of IDc

n, ID−
n , HA2

n,(+), HA2
n+1, HA2

n+1,(k), and
ID∗

n.

Acknowledgements

The author wishes to gratefully acknowledge the anonymous referee for the
many very helpful comments on an earlier draft of this article.

References

[1] P. Aczel. An introduction to inductive definitions. In J. Barwise, editor,
Handbook of Mathematical Logic, volume 90 of Studies in Logic and the
Foundations of Mathematics, chapter C.7, pages 739–782. North-Holland
Publishing Company, 1977.

[2] K. Aehlig. On Fragments of Analysis with Strengths of Finitely Iterated In-
ductive Definitions. PhD thesis, Ludwig-Maximilians-Universität München,
July 2003.

[3] K. Aehlig and J. Johannsen. An elementary fragment of second-order
lambda calculus. ACM Transactions on Computational Logic, 6(2):468–
480, Apr. 2005.

21

[4] T. Altenkirch and T. Coquand. A finitary subsystem of the polymorphic
lambda-calculus. In S. Abramsky, editor, Proceedings of the 5th Interna-
tional Conference on Typed Lambda Caculi and Applications (TLCA ’01),
volume 2044 of Lecture Notes in Computer Science, pages 22–28. Springer
Verlag, 2001.

[5] T. Arai. A slow growing analogue to Buchholz’ proof. Annals of Pure and
Applied Logic, 54:101–120, 1991.

[6] W. Buchholz. The Ωµ+1-rule. In Iterated Inductive Definitions and Subsys-
tems of Analysis: Recent Proof-Theoretical Studies [7], chapter IV, pages
189–233.

[7] W. Buchholz, S. Feferman, W. Pohlers, and W. Sieg. Iterated Inductive
Definitions and Subsystems of Analysis: Recent Proof-Theoretical Studies,
volume 897 of Lecture Notes in Mathematics. Springer Verlag, 1981.

[8] W. Buchholz and K. Schütte. Proof Theory of Impredicative Subsystems of
Analysis. Studies in Proof Theory. Bibliopolis, 1988.

[9] S. Feferman. Formal theories for transfinite iterations of generalized in-
ductive definitions. In A. Kino, J. Myhill, and R. E. Vesley, editors, In-
tuitionism and Proof Theory. Proceedings of the Summer Conference at
Buffalo N.Y. 1968, Studies in Logic and the Foundation of Mathematics,
pages 303–326. North-Holland Publishing Company, 1970.

[10] A. Grzegorczyk. Some classes of recursive fuctions. Rozprawy Matematy-
czne, 4, 1953.

[11] L. Kalmár. Egyszerű példa eldönthetetlen aritmetikai problémára. Matem-
atikai és Fizikai Lapok, 50:1–23, 1943.

[12] D. Leivant. Finitely stratified polymorphism. Information and Computa-
tion, 93:93–113, 1991.

[13] R. Matthes. Extensions of System F by Iteration and Primitive Recursion
on Monotone Inductive Types. PhD thesis, Fakultät für Mathematik und
Informatik der Ludwig-Maximilians-Universität München, May 1998.

[14] W. W. Tait. Intensional interpretations of functionals of finite type. The
Journal of Symbolic Logic, 32(2):198–212, 1967.

[15] G. Takeuti. Consistency proofs of subsystems of classical analysis. Annals
of Mathematics, 86:299–348, 1967.

22

