CS Questions Around Formalisms

Does my program satisfy the spec?

Is there any program satisfying it?

How difficult to check?

Can I express the property at all? ... and how complicated?

Propositional Logic

o p_1

 \bullet p_2

 \bullet p_3

: `

Syntax of Propositional Logic

The set $\mathsf{PL}[p_1,\ldots,p_n]$ of propositional formulae over p_1,\ldots,p_n is freely generated as follows.

- \top , \bot , and all $p_i \in \{p_1, \ldots, p_n\}$ are propositional formulae (so called "atomic formulae").
- If φ is a propositional formula, then so is $\neg \varphi$.
- If φ and ψ are propositional formulae, then so are $(\varphi \wedge \psi)$ and $(\varphi \vee \psi)$.

Evaluation of a Boolean Formula

For $\varphi \in \mathsf{PL}[p_1, \dots, p_n]$ and $\underline{\mathbf{a}} = (a_1, \dots, a_n) \in \{0, 1\}^n$ we define $\varphi[\underline{\mathbf{a}}] \in \{0, 1\}$ as follows.

•
$$T[\underline{\mathbf{a}}] = 1, \ \bot[\underline{\mathbf{a}}] = 0, \ p_i[\underline{\mathbf{a}}] = a_i$$

$$\bullet \ (\neg \varphi)[\underline{\mathbf{a}}] = \neg (\varphi[\underline{\mathbf{a}}])$$

•
$$(\varphi \wedge \psi)[\underline{\mathbf{a}}] = (\varphi[\underline{\mathbf{a}}]) \wedge (\psi[\underline{\mathbf{a}}]),$$

 $(\varphi \vee \psi)[\underline{\mathbf{a}}] = (\varphi[\underline{\mathbf{a}}]) \vee (\psi[\underline{\mathbf{a}}])$

The functions

Model Relation for Propositional Logic

Writing $\underline{\mathbf{a}} \models \varphi$ for $\varphi[\underline{\mathbf{a}}] = 1$ we obtain the following.

- $\underline{\mathbf{a}} \models \top$ always holds and $\underline{\mathbf{a}} \models \bot$ never holds
- $\underline{\mathbf{a}} \models \neg \varphi$ holds iff $\underline{\mathbf{a}} \models \varphi$ does not hold
- $\underline{\mathbf{a}} \models \varphi \land \psi$ holds if $\underline{\mathbf{a}} \models \varphi$ and $\underline{\mathbf{a}} \models \psi$ both hold. $\underline{\mathbf{a}} \models \varphi \lor \psi$ holds if $\underline{\mathbf{a}} \models \varphi$ holds or $\underline{\mathbf{a}} \models \psi$ holds.

Expressive Completeness

Theorem. For every $f: \{0,1\}^n \to \{0,1\}$ there is some $\varphi \in \mathsf{PL}[p_1,\ldots,p_n]$ such that for all $\underline{\mathbf{a}} \in \{0,1\}^n$ we have $f(\underline{\mathbf{a}}) = \varphi[\underline{\mathbf{a}}].$

Expressive Completeness

Theorem. For every $f: \{0,1\}^n \to \{0,1\}$ there is some $\varphi \in \mathsf{PL}[p_1,\ldots,p_n]$ such that for all $\underline{\mathbf{a}} \in \{0,1\}^n$ we have $f(\underline{\mathbf{a}}) = \varphi[\underline{\mathbf{a}}].$

In fact, φ can be chosen to be of the form

$$\bigvee_{j} \bigwedge_{i} \xi_{ij} \quad \text{with } \xi_{ij} \in \{x_i, \neg x_i\}$$

(in "disjunctive normal form")

Other Complete Sets of Connectives

- \wedge , \neg . Indeed, $x \vee y = \neg((\neg x) \wedge (\neg y))$.
- ▶ ∨, ¬
- nand where

x	y	x nand y
0	0	1
0	1	1
1	0	1
1	1	0

Indeed, $\neg x = x \text{ nand } x \text{ and } x \land y = \neg (x \text{ nand } y).$

On Succinctness

Theorem. Let $\varepsilon > 0$. For large n, the fraction of functions

$$\{0,1\}^n \to \{0,1\}$$

that can be represented by formulae of size up to

$$2^{(1-\varepsilon)\cdot n}$$

tends to zero.

In other words, almost all function require exponentially large formulae.

Model Checking in Propositional Logic

Given: Propositional formula $\varphi \in \mathsf{PL}[p_1, \dots, p_n]$ and $\underline{\mathbf{a}} \in \{0, 1\}^n$

Question: $\underline{\mathbf{a}} \models \varphi$?

Solvable in polynomial time (essentially $\mathcal{O}(|\varphi|)$): just compute truth value following the buildup of φ .

Satisfiability in Propositional Logic

Given: Propositional formula $\varphi \in PL[p_1, \dots, p_n]$.

Question: Is there some $\underline{\mathbf{a}} \in \{0,1\}^n$ such that $\underline{\mathbf{a}} \models \varphi$?

This problem is NP-complete.

NP

Definition. A problem is said to be in NP iff it can be solved by a non-deterministic Turing machine in polynomial time.

"NP is verifying proofs"

Conjecture. $P \neq NP$.

NP-completeness

Definition. A problem L is NP-complete iff

- it belongs to NP
- for any problem L' in NP there is an easy (say, in polynomial time) function f such that

$$x \in L' \text{ iff } f(x) \in L$$

Let $G = (\{1, 2, 3, 4\}, E)$ be an undirected graph. It can be described by formulae in $PL[p_{12}, p_{13}, p_{14}, p_{23}, p_{24}, p_{34}]$ where p_{ij} expresses the fact that there is an edge from i to j.

(a) Express: The graph is $\begin{bmatrix} 4 & 3 \\ 1 & 2 \end{bmatrix}$

(b) Express: The graph contains some triangle.

First-Order Logic

Finite Trace Structures

First-Order Structures

Definition. A first-order structure $\mathcal{A} = (A, R_1, R_2, \ldots)$ is given by

- A non-empty set A, called the "universe" of the structure
- Relations R_1, R_2, \ldots on A. I.e., each $R_i \subseteq A^{n_i}$ for some n_i , called the arity.

Word Structures

$$P_{a} = \{1, 3\}, P_{b} = \{2\}, P_{c} = \{4\}$$

1 2 3 4 Universe $\{1, 2, 3, 4\}$

$$<= \{(1,2), (1,3), (1,4), (2,3), (2,4), (3,4)\}$$

Trace Structures and Word Structures

The universe is an initial segment of natural numbers, i.e., $A = \{1, 2, \dots, \ell\}$ and < the usual order on them.

- finite trace structures are given by arbitrary unary relations P_1, P_2, \ldots
- word structures are given by unary relations P_a for $a \in \Sigma$ partitioning the universe

Syntax of Linear Temporal Logic

The set $LTL[p_1, ..., p_n]$ of LTL-formulae is freely generated

- \top , \bot , and all $p_i \in \{p_1, \ldots, p_n\}$
- If $\varphi, \psi \in \mathsf{LTL}[p_1, \dots, p_n]$, then also $\neg \varphi$, $(\varphi \land \psi)$, $(\varphi \lor \psi)$.
- ... and also
 - $X\varphi$ "next"
 - $F\varphi$ "finally"
 - $G\varphi$ "globally"
 - $(\varphi \mathbf{U} \psi)$ "until"

(X, F, G, and U)t t+1 $\mathsf{F}arphi$ $\mathsf{G} arphi$ t'-1 t'

Semantics of LTL

Let $\mathcal{A} = (\{1, \dots, \ell\}, <, P_1, P_2, \dots, P_n)$ and $t \in \{1, \dots, \ell\}$. Define $\mathcal{A}, t \models \varphi$ for $\varphi \in \mathsf{LTL}[p_1, \dots, p_2]$ inductively.

- $\mathcal{A}, t \models \top; \mathcal{A}, t \not\models \bot; \mathcal{A}, t \models p_i \text{ iff } t \in P_i$
- $\mathcal{A}, t \models \varphi \wedge \psi \text{ iff } \dots$
- $\mathcal{A}, t \models X\varphi \text{ iff } t < \ell \text{ and } \mathcal{A}, t+1 \models \varphi$
- $\mathcal{A}, t \models F\varphi \text{ iff } \mathcal{A}, t' \models \varphi \text{ for some } t' \geq t$
- $\mathcal{A}, t \models G\varphi \text{ iff } \mathcal{A}, t' \models \varphi \text{ for all } t' \geq t$
- $\mathcal{A}, t \models \varphi U \psi$ iff there is some $t' \geq t$ s.t. $\mathcal{A}, t' \models \psi$ and $\mathcal{A}, t'' \models \varphi$ for all $t \leq t'' < t'$

Model Relation for Propositional Logic

Writing $\underline{\mathbf{a}} \models \varphi$ for $\varphi[\underline{\mathbf{a}}] = 1$ we obtain the following.

- $\underline{\mathbf{a}} \models \top$ always holds and $\underline{\mathbf{a}} \models \bot$ never holds
- $\underline{\mathbf{a}} \models \neg \varphi$ holds iff $\underline{\mathbf{a}} \models \varphi$ does not hold
- $\underline{\mathbf{a}} \models \varphi \land \psi$ holds if $\underline{\mathbf{a}} \models \varphi$ and $\underline{\mathbf{a}} \models \psi$ both hold. $\underline{\mathbf{a}} \models \varphi \lor \psi$ holds if $\underline{\mathbf{a}} \models \varphi$ holds or $\underline{\mathbf{a}} \models \psi$ holds.

[LTL Model Checking]

t		t		t+1
$\mathcal{A},t\models \mathtt{X}\varphi$	iff			$\mathcal{A},t{+}1\models\varphi$
$\mathcal{A},t\models \mathtt{F}\varphi$	iff	$\mathcal{A},t\models\varphi$	or	$\mathcal{A},t{+}1\models \mathtt{F}\varphi$
$\mathcal{A},t\models \mathtt{G}\varphi$	iff	$\mathcal{A},t\models\varphi$	and	$\mathcal{A},t{+}1\models G\varphi$
				$in \ case \ t+1 \le \ell$
$\mathcal{A},t\models\varphi\mathtt{U}\psi$	iff	$\mathcal{A},t\models\psi$	or	
		$\mathcal{A},t\models\varphi$	and	$\mathcal{A},t{+}1\models\varphi\mathtt{U}\psi$

Example for LTL Model Checking

Formula $G(y \to yUr)$. That this $G(\neg y \lor yUr)$.

${\cal A}$	$r \mid$	1	1	1	0	0	0	0	0	1
	y	0	0	1	0	0	0	1	1	0
	g	0	0	0	1	1	1	0	0	0
$G(y \to y)$	JUr)									
$y \to y U r$	r									
yU r										
$\neg y$										

[LTL and Automata]

For φ construct DFA \mathcal{M}_{φ} with $L(\mathcal{M}_{\varphi}) = \{w | w^{-1} \models \varphi\}.$

States: sets of sub-formulae of φ .

indicating with formulae hold at a given position

Transitions: Given

- previous state $\{\psi \mid \mathcal{A}, t+1 \models \psi\}$
- t'th letter of w, i.e., local properties of \mathcal{A} at time t determine $\{\psi \mid \mathcal{A}, t \models \psi\}$ by the rules seen.

For each of the following formulae, decide whether they hold at the first letter of the given words!

- ullet a and $\mathbf{X}a$ baab abc aaa a
- ullet Fa bbbbbba ba a
- ullet ullet

Consider the language with the predicates r_1 , r_2 , g_1 , g_2 with the interpretation that r_1 and r_2 express that process 1 and 2, respectively, are requesting access to a shared resource, and g_1 and g_2 express that access to the shared resource is granted for process 1 and 2.

Formalise the following statements.

- "No two requests are granted at the same time."
- "Every request will eventually be granted."
- "Every request by process 1 will be granted in the next round."

Consider a traffic light. In our formalisation, we will use the variables r, y, g for the events the red/yellow/green light is on.

Formalise the following events.

- "There is always at least one light on"
- "It is always the case, that you will get a green light sometimes"
- "Whenever there's a yellow light, it will stay till a red light shows up"

First-Order Structures

Definition. A first-order structure $\mathcal{A} = (A, R_1, R_2, \ldots)$ is given by

- A non-empty set A, called the "universe" of the structure
- Relations R_1, R_2, \ldots on A. I.e., each $R_i \subseteq A^{n_i}$ for some n_i , called the arity.

Syntax of First-Order Logic

The set $\mathsf{FOL}[R_1, \ldots, R_n]$ of first-order formulae over the relation symbols R_1, \ldots, R_n is freely generated as follows.

- (x = y) for variables x, y
- $R_j x_{i_1} \dots x_{i_{n_j}}$ if R_j is of arity n_j
- \top , \bot , $\neg \phi$, $(\phi \land \psi)$, $(\phi \lor \psi)$ for formulae ϕ , ψ
- $\forall x \varphi$ and $\exists x \varphi$ for φ a formula and x a variable

Semantics of First-Order Logic

Let $\mathcal{A} = (A, R_1^{\mathcal{A}}, \ldots)$ and $\eta \colon V \to A$. Define $\mathcal{A}, \eta \models \varphi$ for $\varphi \in \mathsf{FOL}[R_1, \ldots]$ inductively.

- $\mathcal{A}, \eta \models x = y \text{ iff } \eta(x) = \eta(y)$
- $\mathcal{A}, \eta \models R_1 y_1 \dots y_n \text{ iff } (\eta(y_1), \dots, \eta(y_n)) \in R_i^{\mathcal{A}}$
- $\mathcal{A}, \eta \models \varphi \wedge \psi \text{ iff } \dots$
- $\mathcal{A}, \eta \models \forall x \varphi \text{ iff for all } a \in A \text{ we have } \mathcal{A}, \eta_x^a \models \varphi$
- $\mathcal{A}, \eta \models \exists x \varphi \text{ iff for some } a \in A \text{ we have } \mathcal{A}, \eta_x^a \models \varphi$

$oxed{LTL and First-Order Logic}$

$\varphi \in LTL[p_1,\ldots,p_n]$	$\tilde{\varphi}(t) \in FOL[<, P_1, \dots, P_n]$
p_i	$P_i(t)$
$\mathtt{X}\varphi$	$\exists t'(\chi_{\text{next}}(t,t') \wedge \tilde{\varphi}(t'))$
F $arphi$	$\exists t'(t \le t' \land \tilde{\varphi}(t'))$
$\mathtt{G}\varphi$	$\forall t'(t \le t' \land \tilde{\varphi}(t'))$
$arphi$ U ψ	$\exists t' (\ t \leq t' \wedge \tilde{\psi}(t') \wedge$
	$\forall t''(((t \le t'') \land (t'' < t')) \to \tilde{\varphi}(t)))$

Negation Normal Form

Lemma.

$$\mathcal{A}, \eta \models \neg \forall x \varphi \text{ iff } \mathcal{A}, \eta \models \exists x \neg \varphi$$

$$\mathcal{A}, \eta \models \neg \exists x \varphi \text{ iff } \mathcal{A}, \eta \models \forall x \neg \varphi$$

Recall from propositional logic.

$$\mathcal{A}, \eta \models \neg(\varphi \land \psi) \text{ iff } \mathcal{A}, \eta \models (\neg \varphi) \lor (\neg \psi)$$

$$\mathcal{A}, \eta \models \neg(\varphi \lor \psi) \text{ iff } \mathcal{A}, \eta \models (\neg \varphi) \land (\neg \psi)$$

$$\mathcal{A}, \eta \models \neg \neg \varphi \text{ iff } \mathcal{A}, \eta \models \varphi$$

Prenex Normal Form

Lemma. Assume $x \notin fv(\psi)$.

$$\mathcal{A}, \eta \models (\forall x \varphi) \land \psi \text{ iff } \mathcal{A}, \eta \models \forall x (\varphi \land \psi)$$

$$\mathcal{A}, \eta \models (\forall x \varphi) \lor \psi \text{ iff } \mathcal{A}, \eta \models \forall x (\varphi \lor \psi)$$

$$\mathcal{A}, \eta \models (\exists x \varphi) \land \psi \text{ iff } \mathcal{A}, \eta \models \exists x (\varphi \land \psi)$$

$$\mathcal{A}, \eta \models (\exists x \varphi) \lor \psi \text{ iff } \mathcal{A}, \eta \models \exists x (\varphi \lor \psi)$$

Words—Spot the difference!

a a b a a vs a a a a a

aabaa vs aaaab

abaca vs aabca

Ehrenfeucht-Fraissé Games

The game is played on configurations

$$\underbrace{(A, R_1^{\mathcal{A}}, R_2^{\mathcal{A}}, \ldots)}_{\mathcal{A}}, a_1, \ldots, a_k \mid \underbrace{(B, R_1^{\mathcal{B}}, R_2^{\mathcal{B}}, \ldots)}_{\mathcal{B}}, b_1, \ldots, b_k$$

where $a_1, \ldots, a_k \in A$ and $b_1, \ldots, b_k \in B$.

In each round, Spoiler picks either $a_{k+1} \in A$ or $b_{k+1} \in B$. Then Duplicator picks the other.

Duplicator needs to keep the invariants

- $a_i = a_j$ iff $b_i = b_j$
- $R_i^{\mathcal{A}}(a_{i_1}, \dots, a_{i_{\ell}})$ iff $R_i^{\mathcal{B}}(b_{i_1}, \dots, b_{i_{\ell}})$

Quantifier-Rank

Definition.

$$\begin{split} \operatorname{qr}(\top) &= \operatorname{qr}(\bot) = \operatorname{qr}(x = y) = \operatorname{qr}(Rx \dots z) = 0 \\ \operatorname{qr}(\neg \varphi) &= \operatorname{qr}(\varphi) \\ \operatorname{qr}(\varphi \wedge \psi) &= \operatorname{qr}(\varphi \vee \psi) = \max\{\operatorname{qr}(\varphi), \operatorname{qr}(\psi)\} \\ \operatorname{qr}(\forall x \varphi) &= \operatorname{qr}(\exists x \varphi) = \operatorname{qr}(\varphi) + 1 \end{split}$$

$$FOL_{k}[R_{1},...,R_{n}] = \{\varphi \in FOL[R_{1},...,R_{n}] \mid qr(\varphi) \leq k\}$$

$$\mathcal{A}, \vec{a} \equiv_{k} \mathcal{B}\vec{b} \text{ iff } \mathcal{A}, \vec{a} \equiv_{FOL_{k}[...]} \mathcal{B}, \vec{b}$$

Ehrenfeucht-Fraïssé Theorem

Theorem. For any configuration $\mathcal{A}, \vec{a} \mid \mathcal{B}, \vec{b}$ in an EF-game over finite structures, the following are equivalent.

- \bullet Duplicator can survive m more rounds.
- $\mathcal{A}, \vec{a} \equiv_m \mathcal{B}, \vec{b}$

Winning Condition for \mathcal{A}, \vec{a}

Define $\chi_{m,\mathcal{A},\vec{a}}$ with $\operatorname{qr}(\chi_{m,\mathcal{A},\vec{a}}) \leq m$ s.t. $\mathcal{B}, \vec{b} \models \chi_{m,\mathcal{A},\vec{a}}(\vec{x})$ iff Duplicator has a strategy for m round in $\mathcal{A}, \vec{a} \mid \mathcal{B}, \vec{b}$.

$$\chi_{m+1,\mathcal{A},\vec{a}}(\vec{x}) = (\bigwedge_{a \in A} \exists y \chi_{m,\mathcal{A},\vec{a},a}) \land (\forall y \bigvee_{a \in A} \chi_{m,\mathcal{A},\vec{a},a})$$

$$\chi_{0,\mathcal{A},\vec{a}}(\vec{x}) = \bigwedge \qquad \varphi \qquad \wedge \qquad \bigwedge \qquad \neg \varphi$$

$$\mathcal{A}, \vec{a} \models \varphi \qquad \qquad \mathcal{A}, \vec{a} \not\models \varphi$$

$$\varphi \text{ atomic} \qquad \varphi \text{ atomic}$$

Example

Let $A = (\{1, 2, 3\}, <, P_a, P_b)$ be the structure for the word aab, i.e. $P_a = \{1, 2\}, P_b = \{3\}.$

- Write down $\chi_{1,\mathcal{A},1}$.
- Does aaab, $1 \models \chi_{1,\mathcal{A},1}$?

Example: Unstructured Sets

If $\mathcal{A} = (A)$ and $\mathcal{B} = (B)$ are structures over the empty signature, then

$$\mathcal{A} \equiv_m \mathcal{B} \text{ iff } (|A| = |B| \text{ or } |A|, |B| \geq m).$$

EF-Games over Linear Orders

Let $m \geq 1$ be a natural number, and $\mathcal{A} = (A, <^{\mathcal{A}})$ and $\mathcal{B} = (B, <^{\mathcal{B}})$ be linear orderings of lengths ℓ_A and ℓ_B , respectively.

Then $\mathcal{A} \equiv_m \mathcal{B}$ iff $(\ell_A = \ell_B \text{ or } \ell_A, \ell_B \geq 2^m - 1)$.

Parity of the Word Length

Syntax of Monadic Second-Order Logic

The set $\mathsf{MSO}[R_1,\ldots,R_n]$ of first-order formulae over the relation symbols R_1,\ldots,R_n is freely generated as follows.

- (x = y) for variables x, y
- $R_j x_{i_1} \dots x_{i_{n_j}}$ if R_j is of arity n_j
- |Xx| for X predicate variable
- \top , \bot , $\neg \phi$, $(\phi \land \psi)$, $(\phi \lor \psi)$ for formulae ϕ , ψ
- $\forall x \varphi$ and $\exists x \varphi$ for φ a formula and x a variable
- $\forall X \varphi$ and $\exists X \varphi$ for φ a fla and X predicate var

Semantics of Monadic Second-Order Logic

Let $\mathcal{A} = (A, R_1^{\mathcal{A}}, \ldots)$ and $\eta \colon V \to A$, and $H \colon V^{(1)} \to \mathfrak{P}(A)$. Define $\mathcal{A}, H, \eta \models \varphi$ for $\varphi \in \mathsf{MSO}[R_1, \ldots]$ inductively.

- $\mathcal{A}, H, \eta \models x = y \text{ iff } \eta(x) = \eta(y)$ $\mathcal{A}, H, \eta \models R_1 y_1 \dots y_n \text{ iff } (\eta(y_1), \dots, \eta(y_n)) \in R_i^{\mathcal{A}}$ $\boxed{\mathcal{A}, H, \eta \models Xx \text{ iff } \eta(x) \in H(X)}$
- $\mathcal{A}, H, \eta \models \varphi \land \psi \text{ iff } \dots$ $\mathcal{A}, H, \eta \models \forall x \varphi \text{ iff } \mathcal{A}, H, \eta_x^a \models \varphi \text{ for all } a \in A$
- $A, H, \eta \models \forall X \varphi \text{ iff } A, H_X^U, \eta \models \varphi \text{ for all } U \in \mathfrak{P}(A)$ $A, H, \eta \models \exists X \varphi \text{ iff } A, H_X^U, \eta \models \varphi \text{ for some } U \in \mathfrak{P}(A)$

Representing Automata Runs in MSO

Theorem. Let $\mathcal{L} \subset \Sigma^+$ be regular. Then there is an $MSO[<, P_a, \ldots]$ -formula φ such that

$$w \in \mathcal{L} \text{ iff } w \models \varphi$$

Run of an Automaton

Let
$$\mathfrak{A} = (Q, I, \Delta, F)$$
 be an NFA, $Q = \{q_0, \dots, q_n\}$.
" \mathfrak{A} has an accepting run": $\exists X_0 \dots \exists X_n (\varphi_i \wedge \varphi_s \wedge \varphi_f)$
 $\varphi_i \equiv \forall x (\text{"}x \text{ first"} \to \bigwedge_j (X_j(x) \to \bigvee_{q_i \in I, (q_i, a, q_j) \in \Delta} P_a(x)))$

$$\varphi_s \equiv \forall x \forall y (\chi_{\mathsf{next}}(x, y) \to \bigwedge_j (X_j(y) \to \bigvee_{(q_i, a, q_j \in \Delta)} (X_i(x) \land P_a(y))))$$

$$\varphi_f \equiv \forall x (\text{``}x \text{ last''} \to \bigvee_{q_j \in F} X_j(x))$$

$$\exists X_0 \exists X_1 [\forall x ((\forall y.x \leq y) \to (X_1(x) \land P_a(x))) \land \\ \forall x \forall y (((x < y) \land \neg \exists z (x < z \land z < y)) \to \\ ((X_0(y) \to (X_1(x) \land P_a(y))) \land \\ (X_1(y) \to (X_0(x) \land P_a(y)))) \land \\ \forall x ((\forall y.y \leq x) \to X_0(y))]$$

MSO Games

$$\mathcal{A}, U_1, \dots, U_k, a_1, \dots, a_\ell \mid \mathcal{B}, V_1, \dots, V_k, b_1, \dots, b_\ell$$

where $U_1, \dots, U_k \subset A, V_1, \dots, V_k \subset B$.

Spoiler can choose between two types of moves.

- choose $a_{\ell+1} \in A$, or $b_{\ell+1} \in B$
- choose $U_{k+1} \subset A$, or $V_{k+1} \subset B$

Duplicator needs to keep the invariants

- $a_i = a_j \text{ iff } b_i = b_j; R_i^{\mathcal{A}}(a_{i_1}, \dots, a_{i_\ell}) \text{ iff } R_i^{\mathcal{B}}(b_{i_1}, \dots, b_{i_\ell})$
- $a_i \in U_j \text{ iff } b_i \in V_j$

MSO Games—The Theorem

For any configuration $\mathcal{A}, \vec{U}, \vec{a} \mid \mathcal{B}, \vec{V}, \vec{b}$ in an MSO-game over finite structures, the following are equivalent.

- \bullet Duplicator can survive m more rounds.
- $\mathcal{A}, \vec{U}, \vec{a} \equiv_m^{MSO} \mathcal{B}, \vec{V}, \vec{b}$

$ig(\mathbf{Winning} \,\, \mathbf{Condition} \,\, \mathbf{for} \,\, \mathcal{A}, ec{U}, ec{a} ig)$

Define $\chi_{m,\mathcal{A},\vec{U},\vec{a}}$ with $qr(\chi_{m,\mathcal{A},\vec{U},\vec{a}}) \leq m$ s.t.

 $\mathcal{B}, \vec{V}, \vec{b} \models \chi_{m,\mathcal{A},\vec{U},\vec{a}}(\vec{x})$ iff Duplicator has a strategy for m rounds in $\mathcal{A}, \vec{U}, \vec{a} \mid \mathcal{B}, \vec{V}, \vec{b}$.

$$\chi_{m+1,\mathcal{A},\vec{U},\vec{a}}(\vec{X},\vec{x}) = \left(\bigwedge_{a \in A} \exists y \chi_{m,\mathcal{A},\vec{U},\vec{a},a} \right) \wedge \left(\forall y \bigvee_{a \in A} \chi_{m,\mathcal{A},\vec{U},\vec{a},a} \right) \\ \wedge \left(\bigwedge_{U \subset A} \exists Y \chi_{m,\mathcal{A},\vec{U},U,\vec{a}} \right) \wedge \left(\forall Y \bigvee_{U \subset A} \exists Y \chi_{m,\mathcal{A},\vec{U},U,\vec{a}} \right) \\ \chi_{0,\mathcal{A},\vec{U},\vec{a}}(\vec{x}) = \bigwedge \varphi \wedge \bigwedge \neg \varphi \\ \mathcal{A}, \vec{a} \models \varphi \qquad \mathcal{A}, \vec{a} \not\models \varphi \\ \varphi \text{ atomic} \qquad \varphi \text{ atomic}$$

Example: Unstructured Sets

If $\mathcal{A} = (A)$ and $\mathcal{B} = (B)$ are structures over the empty signature, then

$$\mathcal{A} \equiv_m^{MSO} \mathcal{B} \text{ iff } (|A| = |B| \text{ or } |A|, |B| \ge 2^{m-1}).$$

MSO-Definability and Regular Language

For $m \geq 0$ we note that

- there are only finitely many \equiv_m^{MSO} classes $[\![\mathcal{A}_w]\!]$, and
- the \equiv_m^{MSO} class of wu only depends on that of w and u.

So

$$Q = \{ \llbracket \mathcal{A}_w \rrbracket \mid w \text{ a word} \}$$

$$\delta \colon \ Q \times \Sigma \longrightarrow Q$$

$$(\llbracket \mathcal{A}_w \rrbracket, a) \mapsto \llbracket \mathcal{A}_{wa} \rrbracket$$

defines a finite automaton.

Büchi's Theorem

The following are equivalent for word languages $\mathcal{L} \subset \Sigma^+$.

- \mathcal{L} is regular
- \mathcal{L} is MSO definable, i.e., there is an MSO formula φ and

$$\mathcal{L} = \{ w \mid w \models \varphi \}$$

Alternative Proof

NFAs are closed under

- intersection $\mathcal{L} \cap \mathcal{L}'$
- union $\mathcal{L} \cup \mathcal{L}'$
- complement

 e.g., via power-set construction to get a DFA
- projection of the alphabet $\{\pi(a_1) \dots \pi(a_n) \mid a_1 \dots a_n \in \mathcal{L}\}$

of their languages.

Moreover, this closure is effective.

NFA Closure Properties

$(\mathbf{Primitives})$

"X is a singleton" $X \subset Y$

"x < y"

[Presburger Arithmetic]

$$X = 13$$
 1 0 1 1 0 0 0 0 0 0 0 $X = 30$ 0 1 1 1 1 0 0 0 0 0 $X = 30$ 1 1 1 1 1 0 0 0 0 0 0 $X = 43$ 1 1 0 1 0 1 0 0 0 0