[CS Questions Around Formalismsj

\
Does my program satisty the spec?

Is there any program satisfying it” }

Can I express the property at all?

...and how complicated?

s How difficult to check?

[Propositional Logic]

P1
P2
P3

® 00

O Pu

[Syntax of Propositional Logic}

The set PL|p1, ..., pn| of propositional formulae over

P1,...,Pn is freely generated as follows.

e T, 1, andall p; € {p1,...,pn} are propositional

formulae (so called “atomic formulae”).
e If © is a propositional formula, then so is —p.

e If © and 1) are propositional formulae, then so are

(p Ap) and (¢ V).

(Evaluation of a Boolean Formula]

FOI' ¥ S PL[pla S 7pn] aﬂd
a=(ay,...,a,) €{0,1}" we define
ola] € {0,1} as follows.

o T[a] =1, L[a] =0, ps[a] = a

* (mp)la] = ~(pla])

o (pAY)la] = (pla]) A(P[a]),
(p V)la] = (¢la]) V(¢[a])

The functions

=NV are

given by
r Y| Ty A} \Y
0O 0O 1 0 0
O 1] O 0 1
I 0 0 1
I 1 1 1

[Model Relation for Propositional Logic}

Writing a = ¢ for p|a] = 1 we obtain the following.

|

|

sV

— T always holds and a = L never holds

— - holds iff a = ¢ does not hold

— o A ¢ holds if a = ¢ and a = ¥ both hold.
— V 1 holds if a = ¢ holds or a = v holds.

[Expressive Completeness]

Theorem. For every f: {0,1}" — {0,1} there is some
@ € PL|p1,...,py] such that for all a € {0,1}" we have

f(a) = ¢lal.

[Expressive Completenessj

Theorem. For every f: {0,1}" — {0, 1} there is some
¢ € PL[p1,...,pn] such that for all a € {0,1}" we have

f(a) = plal.

In fact, ¢ can be chosen to be of the form

\/ /\&J‘7 with gij c {Zl?i, _Iil?i}

(in “disjunctive normal form”)

[Other Complete Sets of Connectivesj

o A, . Indeed, x Vy = =((=x) A(=y)).
o \/’ —/

e nand where

T Y || xrnandy
0 0 1
0 1 1
I 0 1
I 1 0

Indeed, =x = x nand x and x Ay = =(x nand y).

(On Succinctness)

Theorem. Let € > 0. For large n, the fraction of functions

{0,1}" — {0,1}

that can be represented by formulae of size up to

2(1—6)%

tends to zero.

In other words, almost all function require exponentially

large formulae.

[Model Checking in Propositional Logic}

Given: Propositional formula ¢ € PL[py,...,p,| and
ae€{0,1}"

Question: a = @ 7

Solvable in polynomial time (essentially O(|¢])): just
compute truth value following the buildup of .

[Satisﬁability in Propositional Logic}

Given: Propositional formula ¢ € PL{py, ..., p,].

Question: Is there some a € {0,1}" such that a = ¢?

This problem is NP-complete.

Definition. A problem is said to be in NP iff it can be
solved by a non-deterministic Turing machine in
polynomial time.

‘NP is verifying proofs”

Conjecture. P # NP.

[N P—completenessj

Definition. A problem L is NP-complete iff
e it belongs to NP

e for any problem L’ in NP there is an easy (say, in

polynomial time) function f such that

ve Ll iff f(z)e L

[Example]

Let G = ({1,2,3,4},) be an undirected graph. It can be
described by formulae in PL{p12, p13, P14, P23, D24, P34] Where

pi; expresses the fact that there is an edge from 7 to j.

4 3

(a) Express: The graph is IZ
1 2

C
(b) Express: The graph contains some triangle. A
a b

[First-Order Logicj

® OO0 0O

O®0OeO0

OO00C0ee

L N NONON

(Finite Trace Structures)

O —0 O R ={1,3}
o—0—0—© Q =12,3,4}
®e—0 O O P =1{1,2}

1 2 3 4 Universe {1, 2,3,4}

<= 1(1,2),(1,3),(1,4),(2,3),(2,4),(3,4) }

[First-Order Structures]

Definition. A first-order structure A = (A, Ry, Ry, ...) is
given by

e A non-empty set A, called the “universe” of the

structure

e Relations R, Ry,... on A.
ILe., each R; C A™ for some n;, called the arity.

‘Word Structures)

Pa:{173}7 Pb:{Q}a PC:{4}

1 2 3 4 Universe {1, 2,3,4}

<= 1(1,2),(1,3),(1,4),(2,3),(2,4),(3,4) }

(Trace Structures and Word Structures]

The universe is an initial segment of natural numbers, i.e.,
A={1,2,...,/} and < the usual order on them.

e finite trace structures are given by arbitrary unary

relations P, Ps, ...

e word structures are given by unary relations P, for

a € X partitioning the univserse

[Syntax of Linear Temporal Logic]

The set LTL[p1,...,pn] of LTL-formulae is freely generated

e T, 1,and all p; € {p1,...,pn}

o If v,y € LTL[py,...,pn], then also —p, (@A), (V).

e ...and also

— X “next”
— Fop “finally”
— Gy “olobally”

— (pUy) “until”

[X, F, G, and UJ

t'—1 ¢

[Semantics of LTL)]

Let A= ({1,... {},<,P,P,...,P,)and t € {1,... /(}.
Define A, t = ¢ for ¢ € LTL[py, ..., ps| inductively.

e At EpAYiff ...
e At =Xpiff t <fand A t+1 =

o At =Fpiff A;t' = for some t' >t
e AtE=Gpift At =pforallt >t

o A t = Uy iff there is some t' >t s.t.
At =y and A" Epforallt <t <t

[Model Relation for Propositional Logic}

Writing a = ¢ for p|a] = 1 we obtain the following.

|

|

sV

— T always holds and a = L never holds

— - holds iff a = ¢ does not hold

— o A ¢ holds if a = ¢ and a = ¥ both hold.
— V 1 holds if a = ¢ holds or a = v holds.

(LTL Model Checking]

t t t+1
A tEXp iff A t4+1 = o
AtE=Fp iff AtEe or At+l =Fp
AtEGy iff AtkE¢ and A t+1E Gy

m caset+1 </
At E=eUyp it AtE=Ey or

and

A, t+1 = U

[Example for LTL Model Checking}

Formula G(y — yUr). That this G(—y V yUr).

A rl1j1/1]0/0[0|0]|0]1
yllolol1lololol1l1]o0
glololol1]1]1]o0lo0]o0

G(y — yUr)

y — yur

yUr

[LTL and Automata)

For ¢ construct DFA M, with L(M,,) = {w]jw™ | ¢}.

States: sets of sub-formulae of .

indicating with formulae hold at a given position

Transitions: Given
e previous state {¢ | A, t+1 =y}
e t'th letter of w, i.e., local properties of A at time ¢

determine {¢ | A,t = 1} by the rules seen.

[Examplej

For each of the following formulae, decide whether they
hold at the first letter of the given words!

e a and Xa

baab abc aaa a

e Fa
bbbbbba ba a

o Ga

baaaaaaaaaaaaaa aaa a aaaaaab

e aUb

aaaaab abc bcaaab b

[Examplej

Consider the language with the predicates r1, 79, g1, 9o
with the interpretation that r; and r5 express that process
1 and 2, respectively, are requesting access to a shared
resource, and g; and gy express that access to the shared

resource is granted for process 1 and 2.

Formalise the following statements.
e “No two requests are granted at the same time.”
e “Livery request will eventually be granted.”

e “Lvery request by process 1 will be granted in the next

round.”

[ExampleJ

Consider a traffic light. In our formalisation, we will use
the variables r, y, g for the events the red/yellow/green
light 1s on.

Formalise the following events.
e “There is always at least one light on”

e “It is always the case, that you will get a green light

sometimes”

e “Whenever there’s a yellow light, it will stay till a red
light shows up”

[First-Order Structures]

Definition. A first-order structure A = (A, Ry, Ry, ...) is
given by

e A non-empty set A, called the “universe” of the

structure

e Relations R, Ry,... on A.
ILe., each R; C A™ for some n;, called the arity.

[Syntax of First-Order Logicj

The set FOL|Ry, ..., R,] of first-order formulae over the

relation symbols R, ..., R, is freely generated as follows.
e (r =y) for variables z,y
o Rixy, ... Zi,. if R; is of arity n;

o T, 1L, =g, (¢ ANV), (¢ V) for formulae ¢,

e Vxry and dxy for ¢ a formula and x a variable

[Semantics of First-Order Logic}

Let A= (A, RA,..)and n: V — A
Define A, n = ¢ for ¢ € FOL|Ry, . ..] inductively.

e Ank=ux=yiff n(z)=n(y)
o Ank Ruyi...yn iff (0(vn),....0(ys)) € RA
e AnEopnyiff ...

o A nEVrpiff for all a € A we have A, n? = ¢

o A n = dJxyp iff for some a € A we have A, n? = ¢

[LTL and First-Order Logic]

@ € LTL|p1,...,pa] | p(t) € FOL|<, P, ..., P,]
Pi H-(t)
X Tt (Xnext (1) A 4(t'))
Fop (<t Ag(t))
Gy V't <t A (1))
UL Tt (¢t <t AN
VET((E <) A" <t)) — (1))

[Negation Normal Form]

Lemma.
A, n | —Vrp it A, E Jr—p
A,n = —Jup it An = Voo

Recall from propositional logic.
AnE (e AY) it An ks (-e) V(9)
AnE (e V)it AnkE (-e) A(-9)
AnE-pilt AnkEg

(Prenex Normal Form)

Lemma. Assume x ¢ fv(1)).

A,n | (Vep) AN ift Ayn = Va(e AY)
AnE (Vo) Vi ()
A nE (Fxp) ANy iff AnE Jx(p A1)
A= (Frp) Vi (P V)

[Words—Spot the difference!}

aabaa VS aaaaa

aabaa VS aaaab

abaca VS aaboca

[Ehrenfeucht-Fraissé Games)

The game is played on configurations

(A, R RS, ..) an, .. a, | (B,RE,RE .. by,... b

\ . J/ A\ . J/

A B

where a1,...,a, € A and by,...,b, € B.

In each round, Spoiler picks either a1 € A or b1 € B.
Then Duplicator picks the other.

Duplicator needs to keep the invariants
® a; — A4, 1Hbzzb]

o RMay,,...,a;) iff RB(b;,... b;)

[Quantiﬁer— Rank]

Definition.

qr(T) =qr(L)=qr(x=y) =qr(Rx...2) =0
qr(=e) = qr(y)

qr(so A1) =ar(e V) = max{qr(¢),ar(¢)}

ar(Vay) = qr(dze) = ar(p) + 1

FOLW[R1, ..., Ra] = {p € FOL[Ry,..., Ru] | ar(p) < k)
Aa_kalff.Aa_FoLk Bb

(Ehrenfeucht-Fraissé Theorem|

Theorem. For any configuration A,a | B, b in an
EF-game over finite structures, the following are

equivalent.

e Duplicator can survive m more rounds.

e Ad=, Bb

‘Winning Condition for A, |

Define ym.az with qr(xmaz) < m s.t. B,b = xmaz(Z) iff

Duplicator has a strategy for m round in A, a | B, b.

Xm—l—l,.A,J(f) — (/\ Elme,.A,cY,a) A (Vy \/ Xm,A,c'i,a)
acA acA
xouaa@ = N ¢ A AN
A dE ¢ A, d ¢

© atomic © atomic

[Examplej

Let A= ({1,2,3},<, P,, B,) be the structure for the word
aab, i.e. P, ={1,2}, B, = {3}.

e Write down x; 4.

e Does aaab, 1 = x1.41 7

[Example: Unstructured Sets}

If A= (A) and B = (B) are structures over the empty

signature, then

A=, Biff (|A] = |B| or |A],|B|] > m).

[EF-Games over Linear Orders]

Let m > 1 be a natural number, and A = (A, <*) and
B = (B, <”) be linear orderings of lengths ¢4 and /g,

respectively.

Then A=, Biff ({y =/l orly,lg>2"—1).

{Parity of the Word Length]

\ /a\
@) _®
a

(o (C]o) qo qo qo qo qo

()1 q1 d1 1 d1 d1

P, a aaaaaaaaa
| | | I I I I | | |
[[[I I I I [[[

-
|

[Syntax of Monadic Second-Order Logic]

The set MSO|Ry, ..., R,] of first-order formulae over the

relation symbols R4, ..., R, is freely generated as follows.
e (r = y) for variables x,y

o Rixy, ... Zi,. if R; is of arity n;

e | Xz for X predicate variable

o T, L, =g, (¢ AY), (¢ V) for formulae ¢,

e Vxry and dxy for ¢ a formula and x a variable

e VX and dX ¢ for ¢ a fla and X predicate var

[Semantics of Monadic Second-Order Logic}

Let A= (A, R{,..)and n: V — A, and H: V) — B(A).
Define A, H,n |= ¢ for ¢ € MSO|R;y,...] inductively.

o A, Hnlx=yiff n(z)=ny)
A H.n = Ry -y i (9(y1), ... n(yn)) € RS
A HnE Xz iff n(z) € H(X)

e A HnE=EpAyiff ...
A HnEVrpift A, Hn® = ypforallae A

o A HnEVXpiff A,HY, nE ¢ forall U € PB(A)
A HnE3IXpiff A, HY,nE= ¢ for some U € P(A)

[Representing Automata Runs in MSO]

Theorem. Let £ C X7 be regular. Then there is an
MSO[<, P,, . ..]-formula ¢ such that

w e Liff w =@

(Run of an Automaton)

Let A = (Q,I,A, F) be an NFA, Q = {qo,...,qn}
“A has an accepting run”: 3X,...3X,(p; A s A @y)

o; = Vo (“z first” — /\(Xj(m) — \V/ Pux))

QZEI7(QZ7G'7QJ)EA

ps = VaVY(Xnext (T, y) — /\(Xj(y) -\ (X(@)AP.(y))

J (gia,q;€EA)

pr = Vr(“c last” — \/ X,(z))

qg;eF

{Example: (aa)*]

\ /a\
(] {»)
a

AXo3X:[Va((Vy.x < y) — (Xi(x) A P(x)))A
VaVy((z < y) A—Fz(z <z Nz <y)) —
(Xo(y) = (Xa(z) A Fa(y)))A
(X1(y) = (Xo(z) A Faly)))))A
Va((Vy.y <) — Xo(y))]

(MSO Games)

AUy, ... Ug,aq,...5a0 | B,V oo Vi by, o by

where Uy,..., U, C A, V4,..., Vi, C B.
Spoiler can choose between two types of moves.

e choose ap,1 € A,or by € B

e choose Uy 1 C A, or V1 CB
Duplicator needs to keep the invariants

e a;, = a; iff b = b;; R as,, ... a;,) iff RE(by,..., 0;,)

e q, cU; il b, €V

(MSO Games—The Theorem)

For any configuration A, l?, a | B, ‘7, b in an MSO-game

over finite structures, the following are equivalent.

e Duplicator can survive m more rounds.

o AU, a=M9B Vb

‘Winning Condition for A, U/, d]

Define x,. 4 g2 With ar(x,, 4 5.2) < m s.t.

B.V.,b = X,, 4is(@) iff Duplicator has a strategy for m
rounds in A, U, @ | B, Vb

Xm+1,A,(7,6(X7 f) —

Xo,A,ﬁ,a(f) —

(/\ Elme,A,ﬁ,a’,a) /\ (\V/y \/ Xm,A,ﬁ,&’,a)

acA acA

AN Y Xagoa) NVY NV FYX, 504
UcCA UCA
AN S A

.A, a ‘: ¥ A? a \75 ¥

© atomic © atomic

[Example: Unstructured Sets}

If A= (A) and B = (B) are structures over the empty

signature, then
A =M50 Biff (|A] = |B| or |A|,|B] > 2m71).

[MSO—Deﬁnability and Regular Language]

For m > 0 we note that

—MSO

e there are only finitely many =°% classes [A,], and

o the =59 class of wu only depends on that of w and w.

SO
Q = {[A,] | w a word}

0:) X X — Q)
([Aw],a) = [Auwd]

defines a finite automaton.

(Biichi’s Theorem |

The following are equivalent for word languages £ C XT.

e [is regular

e L is MSO definable, i.e., there is an MSO formula ¢

and

L=w|w ¢}

[Alternative Proof)

NFAs are closed under
e intersection £ N L’
e union LU L’

e complement

e.qg., via power-set construction to get a DFA

e projection of the alphabet
{n(ay)...w(ay) | ay...a, € L}

of their languages.

Moreover, this closure is effective.

[NFA Closure Properties}

a a (2)
o8e ?3 ao

b b@ (")

=0
(o Rese

(0)

Q= QoUQ Q= Qo X @ = Qo

“X is a singleton”

[Primitives)

X CY

SR
)
© pu|
~
=
-
=
= -
]
A -
- -
2 o
= =
2 —
3
< —
aF =
—_
—
am
—

01 11100000
1 1T010100O0O0

30
43

X
X
Z

