
�
�

�
�CS Questions Around Formalisms

Does my program satisfy the spec?

Is there any program satisfying it?






How difficult to check?

Can I express the property at all?

. . . and how complicated?

�
�

�
�Propositional Logic

◦ p1

• p2

• p3

...
◦ pn

�
�

�
�Syntax of Propositional Logic

The set PL[p1, . . . , pn] of propositional formulae over

p1, . . . , pn is freely generated as follows.

• ⊤, ⊥, and all pi ∈ {p1, . . . , pn} are propositional

formulae (so called “atomic formulae”).

• If ϕ is a propositional formula, then so is ¬ϕ.

• If ϕ and ψ are propositional formulae, then so are

(ϕ ∧ ψ) and (ϕ ∨ ψ).

�
�

�
�Evaluation of a Boolean Formula

For ϕ ∈ PL[p1, . . . , pn] and

a = (a1, . . . , an) ∈ {0, 1}n we define

ϕ[a] ∈ {0, 1} as follows.

• ⊤[a] = 1, ⊥[a] = 0, pi[a] = ai

• (¬ϕ)[a] = ¬¬(ϕ[a])

• (ϕ ∧ ψ)[a] = (ϕ[a]) ∧∧(ψ[a]),

(ϕ ∨ ψ)[a] = (ϕ[a]) ∨∨(ψ[a])

The functions

¬¬,∧∧,∨∨ are

given by

x y ¬¬y x ∧∧y x ∨∨y

0 0 1 0 0

0 1 0 0 1

1 0 0 1

1 1 1 1

�
�

�
�Model Relation for Propositional Logic

Writing a |= ϕ for ϕ[a] = 1 we obtain the following.

• a |= ⊤ always holds and a |= ⊥ never holds

• a |= ¬ϕ holds iff a |= ϕ does not hold

• a |= ϕ ∧ ψ holds if a |= ϕ and a |= ψ both hold.

a |= ϕ ∨ ψ holds if a |= ϕ holds or a |= ψ holds.

�
�

�
�Expressive Completeness

Theorem. For every f : {0, 1}n → {0, 1} there is some

ϕ ∈ PL[p1, . . . , pn] such that for all a ∈ {0, 1}n we have

f(a) = ϕ[a].

�
�

�
�Expressive Completeness

Theorem. For every f : {0, 1}n → {0, 1} there is some

ϕ ∈ PL[p1, . . . , pn] such that for all a ∈ {0, 1}n we have

f(a) = ϕ[a].

In fact, ϕ can be chosen to be of the form
∨

j

∧

i

ξij with ξij ∈ {xi,¬xi}

(in “disjunctive normal form”)

�
�

�
�Other Complete Sets of Connectives

• ∧, ¬. Indeed, x ∨∨y = ¬¬((¬¬x) ∧∧(¬¬y)).

• ∨, ¬

• nand where

x y x nand y

0 0 1

0 1 1

1 0 1

1 1 0

Indeed, ¬¬x = x nand x and x ∧∧y = ¬¬(x nand y).

�
�

�
�On Succinctness

Theorem. Let ε > 0. For large n, the fraction of functions

{0, 1}n → {0, 1}

that can be represented by formulae of size up to

2(1−ε)·n

tends to zero.

In other words, almost all function require exponentially

large formulae.

�
�

�
�Model Checking in Propositional Logic

Given: Propositional formula ϕ ∈ PL[p1, . . . , pn] and

a ∈ {0, 1}n

Question: a |= ϕ ?

Solvable in polynomial time (essentially O(|ϕ|)): just

compute truth value following the buildup of ϕ.

�
�

�
�Satisfiability in Propositional Logic

Given: Propositional formula ϕ ∈ PL[p1, . . . , pn].

Question: Is there some a ∈ {0, 1}n such that a |= ϕ?

This problem is NP-complete.

�
�

�
�NP

Definition. A problem is said to be in NP iff it can be

solved by a non-deterministic Turing machine in

polynomial time.

“NP is verifying proofs”

Conjecture. P 6= NP.

�
�

�
�NP-completeness

Definition. A problem L is NP-complete iff

• it belongs to NP

• for any problem L′ in NP there is an easy (say, in

polynomial time) function f such that

x ∈ L′ iff f(x) ∈ L

�
�

�
�Example

Let G = ({1, 2, 3, 4}, E) be an undirected graph. It can be

described by formulae in PL[p12, p13, p14, p23, p24, p34] where

pij expresses the fact that there is an edge from i to j.

(a) Express: The graph is

1

4

2

3

r r
r r
��

(b) Express: The graph contains some triangle.
a b

c

r r
r

�� AA

�
�

�
�First-Order Logic

•
•
◦
◦
•

W

◦
◦
◦
•
•

O

◦
•
◦
•
◦

R

· · ·

•
◦
◦
•
◦

D

-

t1 t2 t3 . . . tn

�
�

�
�Finite Trace Structures

•
◦
•

◦
•
•

•
•
◦

◦
•
◦

R = {1, 3}
Q = {2, 3, 4}
P = {1, 2}

-

1 2 3 4

< = {(1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (3, 4)}

Universe {1, 2, 3, 4}

�
�

�
�First-Order Structures

Definition. A first-order structure A = (A,R1, R2, . . .) is

given by

• A non-empty set A, called the “universe” of the

structure

• Relations R1, R2, . . . on A.

I.e., each Ri ⊆ Ani for some ni, called the arity.

�
�

�
�Word Structures

Pa = {1, 3}, Pb = {2}, Pc = {4}

a b a c

-

1 2 3 4

< = {(1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (3, 4)}

Universe {1, 2, 3, 4}

�
�

�
�Trace Structures and Word Structures

The universe is an initial segment of natural numbers, i.e.,

A = {1, 2, . . . , ℓ} and < the usual order on them.

• finite trace structures are given by arbitrary unary

relations P1, P2, . . .

• word structures are given by unary relations Pa for

a ∈ Σ partitioning the univserse

�
�

�
�Syntax of Linear Temporal Logic

The set LTL[p1, . . . , pn] of LTL-formulae is freely generated

• ⊤, ⊥, and all pi ∈ {p1, . . . , pn}

• If ϕ,ψ ∈ LTL[p1, . . . , pn], then also ¬ϕ, (ϕ∧ψ), (ϕ∨ψ).

• . . . and also

– Xϕ “next”

– Fϕ “finally”

– Gϕ “globally”

– (ϕUψ) “until”

�
�

�
�X, F, G, and U

-

t

Xϕ

t+1

ϕ

-

t

Fϕ

t′

ϕ

-

t

Gϕ ϕ

-

t

ϕUψ

t′t′−1

ψϕ

�
�

�
�Semantics of LTL

Let A = ({1, . . . , ℓ}, <, P1, P2, . . . , Pn) and t ∈ {1, . . . , ℓ}.

Define A, t |= ϕ for ϕ ∈ LTL[p1, . . . , p2] inductively.

• A, t |= ⊤; A, t 6|= ⊥; A, t |= pi iff t ∈ Pi

• A, t |= ϕ ∧ ψ iff . . .

• A, t |= Xϕ iff t < ℓ and A, t+1 |= ϕ

• A, t |= Fϕ iff A, t′ |= ϕ for some t′ ≥ t

• A, t |= Gϕ iff A, t′ |= ϕ for all t′ ≥ t

• A, t |= ϕUψ iff there is some t′ ≥ t s.t.

A, t′ |= ψ and A, t′′ |= ϕ for all t ≤ t′′ < t′

�
�

�
�Model Relation for Propositional Logic

Writing a |= ϕ for ϕ[a] = 1 we obtain the following.

• a |= ⊤ always holds and a |= ⊥ never holds

• a |= ¬ϕ holds iff a |= ϕ does not hold

• a |= ϕ ∧ ψ holds if a |= ϕ and a |= ψ both hold.

a |= ϕ ∨ ψ holds if a |= ϕ holds or a |= ψ holds.

�
�

�
�LTL Model Checking

t t t+1

A, t |= Xϕ iff A, t+1 |= ϕ

A, t |= Fϕ iff A, t |= ϕ or A, t+1 |= Fϕ

A, t |= Gϕ iff A, t |= ϕ and A, t+1 |= Gϕ

in case t+ 1 ≤ ℓ

A, t |= ϕUψ iff A, t |= ψ or

A, t |= ϕ and A, t+1 |= ϕUψ

�
�

�
�Example for LTL Model Checking

Formula G(y → yUr). That this G(¬y ∨ yUr).

A r 1 1 1 0 0 0 0 0 1

y 0 0 1 0 0 0 1 1 0

g 0 0 0 1 1 1 0 0 0

G(y → yUr)

y → yUr

yUr

¬y

�
�

�
�LTL and Automata

For ϕ construct DFA Mϕ with L(Mϕ) = {w|w−1 |= ϕ}.

States: sets of sub-formulae of ϕ.

indicating with formulae hold at a given position

Transitions: Given

• previous state {ψ | A, t+1 |= ψ}

• t’th letter of w, i.e., local properties of A at time t

determine {ψ | A, t |= ψ} by the rules seen.

�
�

�
�Example

For each of the following formulae, decide whether they

hold at the first letter of the given words!

• a and Xa

baab abc aaa a

• Fa

bbbbbba ba a

• Ga

baaaaaaaaaaaaaa aaa a aaaaaab

• aUb

aaaaab abc bcaaab b

�
�

�
�Example

Consider the language with the predicates r1, r2, g1, g2

with the interpretation that r1 and r2 express that process

1 and 2, respectively, are requesting access to a shared

resource, and g1 and g2 express that access to the shared

resource is granted for process 1 and 2.

Formalise the following statements.

• “No two requests are granted at the same time.”

• “Every request will eventually be granted.”

• “Every request by process 1 will be granted in the next

round.”

�
�

�
�Example

Consider a traffic light. In our formalisation, we will use

the variables r, y, g for the events the red/yellow/green

light is on.

Formalise the following events.

• “There is always at least one light on”

• “It is always the case, that you will get a green light

sometimes”

• “Whenever there’s a yellow light, it will stay till a red

light shows up”

�
�

�
�First-Order Structures

Definition. A first-order structure A = (A,R1, R2, . . .) is

given by

• A non-empty set A, called the “universe” of the

structure

• Relations R1, R2, . . . on A.

I.e., each Ri ⊆ Ani for some ni, called the arity.

�
�

�
�Syntax of First-Order Logic

The set FOL[R1, . . . , Rn] of first-order formulae over the

relation symbols R1, . . . , Rn is freely generated as follows.

• (x = y) for variables x, y

• Rjxi1 . . . xinj
if Rj is of arity nj

• ⊤, ⊥, ¬φ, (φ ∧ ψ), (φ ∨ ψ) for formulae φ, ψ

• ∀xϕ and ∃xϕ for ϕ a formula and x a variable

�
�

�
�Semantics of First-Order Logic

Let A = (A,RA
1 , . . .) and η : V → A.

Define A, η |= ϕ for ϕ ∈ FOL[R1, . . .] inductively.

• A, η |= x = y iff η(x) = η(y)

• A, η |= R1y1 . . . yn iff (η(y1), . . . , η(yn)) ∈ RA
i

• A, η |= ϕ ∧ ψ iff . . .

• A, η |= ∀xϕ iff for all a ∈ A we have A, ηa
x |= ϕ

• A, η |= ∃xϕ iff for some a ∈ A we have A, ηa
x |= ϕ

�
�

�
�LTL and First-Order Logic

ϕ ∈ LTL[p1, . . . , pn] ϕ̃(t) ∈ FOL[<,P1, . . . , Pn]

pi Pi(t)

Xϕ ∃t′(χnext(t, t
′) ∧ ϕ̃(t′))

Fϕ ∃t′(t ≤ t′ ∧ ϕ̃(t′))

Gϕ ∀t′(t ≤ t′ ∧ ϕ̃(t′))

ϕUψ ∃t′(t ≤ t′ ∧ ψ̃(t′)∧

∀t′′(((t ≤ t′′) ∧ (t′′ < t′)) → ϕ̃(t)))

�
�

�
�Negation Normal Form

Lemma.

A, η |= ¬∀xϕ iff A, η |= ∃x¬ϕ

A, η |= ¬∃xϕ iff A, η |= ∀x¬ϕ

Recall from propositional logic.

A, η |= ¬(ϕ ∧ ψ) iff A, η |= (¬ϕ) ∨ (¬ψ)

A, η |= ¬(ϕ ∨ ψ) iff A, η |= (¬ϕ) ∧ (¬ψ)

A, η |= ¬¬ϕ iff A, η |= ϕ

�
�

�
�Prenex Normal Form

Lemma. Assume x 6∈ fv(ψ).

A, η |= (∀xϕ) ∧ ψ iff A, η |= ∀x(ϕ ∧ ψ)

A, η |= (∀xϕ) ∨ ψ iff A, η |= ∀x(ϕ ∨ ψ)

A, η |= (∃xϕ) ∧ ψ iff A, η |= ∃x(ϕ ∧ ψ)

A, η |= (∃xϕ) ∨ ψ iff A, η |= ∃x(ϕ ∨ ψ)

�
�

�
�Words—Spot the difference!

a a b a a vs a a a a a

a a b a a vs a a a a b

a b a c a vs a a b c a

�
�

�
�Ehrenfeucht-Fräıssé Games

The game is played on configurations

(A,RA

1 , R
A

2 , . . .)
︸ ︷︷ ︸

A

, a1, . . . , ak | (B,RB

1 , R
B

2 , . . .)
︸ ︷︷ ︸

B

, b1, . . . , bk

where a1, . . . , ak ∈ A and b1, . . . , bk ∈ B.

In each round, Spoiler picks either ak+1 ∈ A or bk+1 ∈ B.

Then Duplicator picks the other.

Duplicator needs to keep the invariants

• ai = aj iff bi = bj

• RA
i (ai1 , . . . , aiℓ) iff RB

i (bi1 , . . . , biℓ)

�
�

�
�Quantifier-Rank

Definition.

qr(⊤) = qr(⊥) = qr(x = y) = qr(Rx . . . z) = 0

qr(¬ϕ) = qr(ϕ)

qr(ϕ ∧ ψ) = qr(ϕ ∨ ψ) = max{qr(ϕ), qr(ψ)}

qr(∀xϕ) = qr(∃xϕ) = qr(ϕ) + 1

FOLk[R1, . . . , Rn] = {ϕ ∈ FOL[R1, . . . , Rn] | qr(ϕ) ≤ k}

A,~a ≡k B~b iff A,~a ≡FOLk[...] B,~b

�
�

�
�Ehrenfeucht-Fräıssé Theorem

Theorem. For any configuration A,~a | B,~b in an

EF-game over finite structures, the following are

equivalent.

• Duplicator can survive m more rounds.

• A,~a ≡m B,~b

�
�

�
�Winning Condition for A,~a

Define χm,A,~a with qr(χm,A,~a) ≤ m s.t. B,~b |= χm,A,~a(~x) iff

Duplicator has a strategy for m round in A,~a | B,~b.

χm+1,A,~a(~x) = (
∧

a∈A

∃yχm,A,~a,a) ∧ (∀y
∨

a∈A

χm,A,~a,a)

χ0,A,~a(~x) =
∧

A,~a |= ϕ

ϕ atomic

ϕ ∧
∧

A,~a 6|= ϕ

ϕ atomic

¬ϕ

�
�

�
�Example

Let A = ({1, 2, 3}, <, Pa, Pb) be the structure for the word

aab, i.e. Pa = {1, 2}, Pb = {3}.

• Write down χ1,A,1.

• Does aaab, 1 |= χ1,A,1 ?

�
�

�
�Example: Unstructured Sets

If A = (A) and B = (B) are structures over the empty

signature, then

A ≡m B iff (|A| = |B| or |A|, |B| ≥ m).

��
��qqq̀q` `` ��

��qq` ` q` ``q

�
�

�
�EF-Games over Linear Orders

Let m ≥ 1 be a natural number, and A = (A,<A) and

B = (B,<B) be linear orderings of lengths ℓA and ℓB,

respectively.

Then A ≡m B iff (ℓA = ℓB or ℓA, ℓB ≥ 2m − 1).

�
�

�
�Parity of the Word Length

q0��
��
��
��

q1��
��a

a

-
a a a a a a a a a a

q1 q1 q1 q1 q1

q0 q0 q0 q0 q0(q0)

Q1

Q0

Pa

�
�

�
�Syntax of Monadic Second-Order Logic

The set MSO[R1, . . . , Rn] of first-order formulae over the

relation symbols R1, . . . , Rn is freely generated as follows.

• (x = y) for variables x, y

• Rjxi1 . . . xinj
if Rj is of arity nj

• Xx for X predicate variable

• ⊤, ⊥, ¬φ, (φ ∧ ψ), (φ ∨ ψ) for formulae φ, ψ

• ∀xϕ and ∃xϕ for ϕ a formula and x a variable

• ∀Xϕ and ∃Xϕ for ϕ a fla and X predicate var

�
�

�
�Semantics of Monadic Second-Order Logic

Let A = (A,RA
1 , . . .) and η : V → A, and H : V (1) → P(A).

Define A, H, η |= ϕ for ϕ ∈ MSO[R1, . . .] inductively.

• A, H, η |= x = y iff η(x) = η(y)

A, H, η |= R1y1 . . . yn iff (η(y1), . . . , η(yn)) ∈ RA
i

A, H, η |= Xx iff η(x) ∈ H(X)

• A, H, η |= ϕ ∧ ψ iff . . .

A, H, η |= ∀xϕ iff A, H, ηa
x |= ϕ for all a ∈ A

• A, H, η |= ∀Xϕ iff A, HU
X , η |= ϕ for all U ∈ P(A)

A, H, η |= ∃Xϕ iff A, HU
X , η |= ϕ for some U ∈ P(A)

�
�

�
�Representing Automata Runs in MSO

Theorem. Let L ⊂ Σ+ be regular. Then there is an

MSO[<,Pa, . . .]-formula ϕ such that

w ∈ L iff w |= ϕ

�
�

�
�Run of an Automaton

Let A = (Q, I,∆, F) be an NFA, Q = {q0, . . . , qn}.

“A has an accepting run”: ∃X0 . . . ∃Xn(ϕi ∧ ϕs ∧ ϕf)

ϕi ≡ ∀x(“x first” →
∧

j

(Xj(x) →
∨

qi∈I,(qi,a,qj)∈∆

Pa(x)))

ϕs ≡ ∀x∀y(χnext(x, y) →
∧

j

(Xj(y) →
∨

(qi,a,qj∈∆)

(Xi(x)∧Pa(y))))

ϕf ≡ ∀x(“x last” →
∨

qj∈F

Xj(x))

�
�

�
�Example: (aa)∗

q0��
��
��
��

q1��
��a

a

∃X0∃X1[∀x((∀y.x ≤ y) → (X1(x) ∧ Pa(x)))∧

∀x∀y(((x < y) ∧ ¬∃z(x < z ∧ z < y)) →

((X0(y) → (X1(x) ∧ Pa(y)))∧

(X1(y) → (X0(x) ∧ Pa(y)))))∧

∀x((∀y.y ≤ x) → X0(y))]

�
�

�
�MSO Games

A, U1, . . . , Uk, a1, . . . , aℓ | B, V1, . . . , Vk, b1, . . . , bℓ

where U1, . . . , Uk ⊂ A, V1, . . . , Vk ⊂ B.

Spoiler can choose between two types of moves.

• choose aℓ+1 ∈ A, or bℓ+1 ∈ B

• choose Uk+1 ⊂ A, or Vk+1 ⊂ B

Duplicator needs to keep the invariants

• ai = aj iff bi = bj; R
A
i (ai1 , . . . , aiℓ) iff RB

i (bi1 , . . . , biℓ)

• ai ∈ Uj iff bi ∈ Vj

�
�

�
�MSO Games—The Theorem

For any configuration A, ~U,~a | B, ~V ,~b in an MSO-game

over finite structures, the following are equivalent.

• Duplicator can survive m more rounds.

• A, ~U,~a ≡MSO
m B, ~V ,~b

�

�
	Winning Condition for A, ~U,~a

Define χm,A,~U,~a with qr(χm,A,~U,~a) ≤ m s.t.

B, ~V ,~b |= χm,A,~U,~a(~x) iff Duplicator has a strategy for m

rounds in A, ~U,~a | B, ~V ,~b.

χm+1,A,~U,~a(
~X, ~x) = (

∧

a∈A

∃yχm,A,~U,~a,a) ∧ (∀y
∨

a∈A

χm,A,~U,~a,a)

∧(
∧

U⊂A

∃Y χm,A,~U,U,~a) ∧ (∀Y
∨

U⊂A

∃Y χm,A,~U,U,~a)

χ0,A,~U,~a(~x) =
∧

A,~a |= ϕ

ϕ atomic

ϕ ∧
∧

A,~a 6|= ϕ

ϕ atomic

¬ϕ

�
�

�
�Example: Unstructured Sets

If A = (A) and B = (B) are structures over the empty

signature, then

A ≡MSO
m B iff (|A| = |B| or |A|, |B| ≥ 2m−1).

��
��```̀ ` ` `` ��

��``` ` ` ` ```

�
�

�
�MSO-Definability and Regular Language

For m ≥ 0 we note that

• there are only finitely many ≡MSO
m classes [[Aw]], and

• the ≡MSO
m class of wu only depends on that of w and u.

So

Q = {[[Aw]] | w a word}

δ : Q× Σ → Q

([[Aw]], a) 7→ [[Awa]]

defines a finite automaton.

�
�

�
�Büchi’s Theorem

The following are equivalent for word languages L ⊂ Σ+.

• L is regular

• L is MSO definable, i.e., there is an MSO formula ϕ

and

L = {w | w |= ϕ}

�
�

�
�Alternative Proof

NFAs are closed under

• intersection L ∩ L′

• union L ∪ L′

• complement

e.g., via power-set construction to get a DFA

• projection of the alphabet

{π(a1) . . . π(an) | a1 . . . an ∈ L}

of their languages.

Moreover, this closure is effective.

�
�

�
�NFA Closure Properties

nk n

n nk

Q = Q0 ∪Q1

a

b

a

b

n n
nk n

a

b

Q = Q0 ×Q1

nk n



0

0








1

0





nk n
(

0
)

(

0
)

Q = Q0

�
�

�
�Primitives

��
��

��
��m

“X is a singleton”

1

0 0
��
��m




0

0



 ,




1

0



 ,




1

1





X ⊂ Y

��
��

��
��m

“x < y”




0

1








0

0








0

0



 ,




1

0





�
�

�
�Presburger Arithmetic

-

X = 13 1 0 1 1 0 0 0 0 0 0

X = 30 0 1 1 1 1 0 0 0 0 0

Z = 43 1 1 0 1 0 1 0 0 0 0

